
11/17/16 CS61 Fall 2016 1 1

Synchronization Overview

•  Learning Objectives:
•  Identify synchronization problems
•  Explain how synchronization problems arise and what bad

things can go wrong.
•  Use pthreads, mutexes, and condition variables.
•  Define:

•  Mutual exclusion
•  Critical section
•  Race condition
•  Deadlock
•  Starvation

Deconstructing the Problem We Solved Tuesday

•  Recall the problem we had Tuesday:
•  A parent wanted to wait for a child to exit, but it also wanted

to avoid waiting forever.

•  We had several unsatisfying solutions that left us
vulnerable to race conditions.

•  We then developed a solution using select that
worked.

•  In the exercises, we also developed solutions using
signalfd and pselect that worked.

11/17/16 CS61 Fall 2016 2

What’s a Programmer to do?

•  This is an instance of a general class of problems:
•  We want to check on an event
•  If the event has not happened, we want to wait for it

•  We discovered that calls like select, pselect, and
signalfd allow us to solve the problem, because
they provide an atomic interface that lets us check on
a condition and block without allowing something to
happen between the check and block.

•  The operating system implements these calls,
guaranteeing the atomicity, because it controls when
processes run.

11/17/16 CS61 Fall 2016 3

Providing Atomicity

•  What if we had to ask the operating system to provide
atomicity every time we needed it?

11/17/16 CS61 Fall 2016 4

Providing Atomicity

•  What if we had to ask the operating system to provide
atomicity every time we needed it?
•  Could get expensive – recall that system calls are more

expensive than regular function calls.
•  But wait – if you’re synchronizing between two processes,

doesn’t the OS have to get involved when they switch
anyway?

•  Maybe …
•  What if the two processes are running on different processors?
•  What if they are running on different machines?

11/17/16 CS61 Fall 2016 5

Where we are going

11/17/16 CS61 Fall 2016 6

Kernel

User space
Higher level synchronization:
waiting for and timing out a

child.

system calls providing
atomic behavior Develop some abstractions to

help us with atomicity

Hardware Look at the primitives the
HW gives us

Use them
within a
process

Use them in
managing
communication
with other
machines

What problem are we solving?

•  You have some shared state (e.g., a child’s exit
status).

•  You need to be able to read/modify it and take action
based on that state, knowing that someone else isn’t
doing the same thing.

•  Examples from real life:
•  Two people who share a bank account must be able to use

an ATM at the same time.
•  Two students wish to ask a single teaching fellow a question.
•  You want to do laundry, but the machine is occupied – you’d

like to be notified when it’s available.

11/17/16 CS61 Fall 2016 7

Why is this hard?

11/17/16 CS61 Fall 2016 8

Me My spouse Bank

$100

get-balance

get-balance

$100

Withdraw $20
Set balance=80

Withdraw $90

Set balance=$10

Th
in

ki
ng

 …

Bad Stuff Happens (1)

•  Race condition:
•  When correctness depends on precisely how threads of

control are interleaved.
•  Produces unpredictable results.
•  VERY difficult to debug

•  Typically you do not know there is a race condition until long after it has
occurred.

•  Non-deterministic, so you cannot easily reproduce it

•  We need to introduce some abstractions and mechanisms to
implement those abstractions to deal with race conditions.

11/17/16 CS61 Fall 2016 9

Conceptual Building Blocks

•  Mutual exclusion
•  Preventing concurrent access to something

•  A piece of code
•  A variable

•  Synchronization often provides mutual exclusion between
threads (or processes).

•  Critical sections
•  The piece of code to which we need to provide mutual

exclusion.
•  Typically the code that manipulates or examines shared

state.
•  Goal is to keep critical sections as short as possible.
•  Clearly identifying critical sections is a good first step!

11/17/16 CS61 Fall 2016 10

Mutual exclusion/critical sections

11/17/16 CS61 Fall 2016 11

Me My spouse Bank

$100

get-balance

get-balance

$100

Withdraw $20
Set balance=80

Withdraw $90

Set balance=$10

Th
in

ki
ng

 …

m
ut

ex

lock

unlock

Avoiding Race Conditions

•  Here are some coding techniques to help you avoid
race conditions:
•  You will use synchronization primitives to manage critical

sections to achieve mutual exclusion.
•  Make sure you always use the same synchronization

primitive to access the same state.
•  Whenever possible encapsulate synchronization with

manipulation (design synchronized APIs). Violate them at
your own peril.

•  Document what primitives protect what resources.
•  Document assumptions about synchronization.
•  Review each other’s designs and code.

11/17/16 CS61 Fall 2016 12

Bad stuff happens (2)

•  Starvation
•  When a process blocks waiting for a resource but never gets

it.
•  How can this happen?

•  Scheduling is non-deterministic.
•  Scheduling gives preference to some processes in a way that could

lead to starvation of others.

•  Difficult to debug
•  Sometimes handy to always have a simple backup FIFO scheduling

discipline so you can determine if failure to run is a starvation problem
or something else.

11/17/16 CS61 Fall 2016 13

Bad stuff happens (3)

•  Deadlock
•  The inverse of a race condition.
•  When two or more agents block each other so that neither

can make forward progress.
•  You can only have deadlock if the following conditions hold

(conversely, if you can avoid at least one of these conditions,
you can avoid deadlock):

1.  Resource is not preemptible (i.e., you can’t make someone give it up
temporarily while someone else uses it).

2.  Resource requires mutual exclusion.
3.  Someone holding a resource can block waiting for other resources.
4.  There exists a cycle in the graph with a directed edge between each

a process and the process for which it is waiting. (This is called a
“waits-for” graph – more details coming.)

11/17/16 CS61 Fall 2016 14

Visualizing Deadlock (1)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 15

A

B

P

Q

Visualizing Deadlock (2)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 16

A

B

P

Q

Lock

Visualizing Deadlock (3)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 17

A

B

P

Q

Lock

Lock

Visualizing Deadlock (4)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 18

A

B

P

Q

Lock

Lock

Visualizing Deadlock (5)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 19

A

B

P

Q

Lock

Lock

P

Q
w

ai
ts

-fo
r

Visualizing Deadlock (6)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 20

A

B

P

Q

Lock

Lock

P

Q
w

ai
ts

-fo
r

Visualizing Deadlock (7)

•  Assume we have two processes and two objects.

11/17/16 CS61 Fall 2016 21

A

B

P

Q

Lock

Lock

P

Q
w

ai
ts

-fo
r w

aits-for

Avoiding Deadlock

•  Never acquire more than one resource at a time
(somewhat inflexible).

•  Always acquire resources in the same order (not
always feasible, e.g., you don’t know all the
resources you need).

•  Before waiting, check for deadlock and fail the
operation if it would lead to a deadlock (might cause
you to lose a lot of work).

11/17/16 CS61 Fall 2016 22

Process = Address Space + Thread(s) (1)

•  A process is composed of two parts:
•  A part that keeps track of “stuff”: Address space
•  A dynamic part: Thread

•  Address space:
•  The set of addresses (e.g., memory locations) to which a

running computation has access.
•  Address spaces provide protection boundaries.

11/17/16 CS61 Fall 2016 23

Process = Address Space + Thread(s) (2)

•  A process is composed of two parts:
•  A part that keeps track of “stuff”: Address space
•  A dynamic part: Thread

•  Thread:
•  A logical flow of control
•  Execution state

•  A process has one address space and one or more
threads in it.

•  Threads share the address space, i.e., memory, so
you need to synchronize access to memory between
threads.

11/17/16 CS61 Fall 2016 24

Pthreads

•  Pthreads is a standard interface to threads.
•  Specified by POSIX

•  Includes APIs for different aspects of threads:
•  Thread routines (e.g., create, exit, join)
•  Attribute object routines (get and set thread attributes)
•  Mutex routines
•  Condition variable routines
•  Read/write lock routines
•  Per-thread context routines – manage per-thread data
•  Cleanup routines

11/17/16 CS61 Fall 2016 25

Thread Routines

int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg);
void pthread_exit(void *value_ptr);
pthread_t pthread_self(void);
int pthread_join(pthread_t thread,
 void **value_ptr);

11/17/16 CS61 Fall 2016 26

Mutex Routines

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

11/17/16 CS61 Fall 2016 27

Screen Capture

•  Let’s look at pingpong.c (in synch1)
•  We have four threads (2 pings and 2 pongs); they are trying

to alternate printing ping and pong, but are unsynchronized.
•  Let’s see if we can add locks (mutexes) to make this work.
•  Solution is in pingpong-mutex.c

11/17/16 CS61 Fall 2016 28

Condition Variables (CV)

•  A construct designed to let you atomically check a
condition and wait if the condition is not true.

•  Paired with a mutex that protects the state that the
condition checks.

•  Interface
•  cv_create (cv_destroy): Create (Destroy) a condition

variable
•  cv_wait: block until the condition becomes true
•  cv_broadcast: wake eveyone waiting on this condition

variable
•  cv_signal: wake one entity waiting on this condition variable

•  Use case:
•  Want to run when a condition is true
•  Condition is typically simple
•  Need to check condition and wait atomically

11/17/16 CS61 Fall 2016 29

CV Usage Pattern

•  Usage:
1.  Acquire mutex
2.  Check condition
3.  If you need to wait on condition, call cv_wait.
4.  Once condition is true, decide if you want to cv_signal or

cv_broadcast information to others.
5.  Release mutex

•  Semantics:
•  Hoare semantics: If you wait on a condition, when you wake up you are

guaranteed that the condition is true.
•  Mesa semantics: No guarantees when you wake; someone else may

have beaten you to the punch.
•  pthreads uses Mesa semantics; you must code accordingly.

•  Typically, this means that condition checks appear in a while loop.

11/17/16 CS61 Fall 2016 30

CV Example

•  How might we do the, “Check if there is work on a work
queue, and if so, let the server processes know.”

work_cv = create_cv();
work_mutex = create_mutex();
lock(work_mutex);
while (work queue is empty)

cv_wait(work_cv,work_mutex);
// Now we can signal workers
cv_broadcast(work_cv);
unlock(work_mutex);

11/17/16 CS61 Fall 2016 31

Condition Variable Routines

int pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_destroy(pthread_cond_t *cond);

11/17/16 CS61 Fall 2016 32

Screen Capture

•  Let’s now see if we can use CVs to make this a bit
more efficient
•  Solution is in pingpong-cv.c

11/17/16 CS61 Fall 2016 33

