
10/4/16 CS61 Fall 2016

Storage 2: From HW
 Caching to SW caching

•  Learning Objectives
•  Translate what we learned about hardware caches to

software.
•  Evaluate the efficacy of a cache.
•  Define:

•  Cache block
•  Cache slot
•  Cache hit/miss rate
•  Replacement policy

1

The Memory Hierarchy

10/4/16 CS61 Fall 2016 2

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

B
ig

ge
r

Fa
st

er
 (M

or
e

E
xp

en
si

ve
)

The Memory Hierarchy

10/4/16 CS61 Fall 2016 3

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

Flash Drive

Disk Drive

B
ig

ge
r

Fa
st

er
 (M

or
e

E
xp

en
si

ve
)

The Memory Hierarchy

10/4/16 CS61 Fall 2016 4

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

Flash Drive

Disk Drive

B
ig

ge
r

Fa
st

er
 (M

or
e

E
xp

en
si

ve
)

The Memory Hierarchy -- Speed

10/4/16 CS61 Fall 2016 5

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

Solid State (flash) Drive

Disk Drive

~ 1 KB (~100 b/core)

256 KB (64 KB/core)

1 MB (256KB/core)

8 MB

128 MB

32 GB

~200 GB – 1 TB

2-5 TB

.3 ns

1.1 ns

3.3 ns

12.8 ns

42.4 ns

62.9 ns

~.1 ms

~3 ms

Fa
st

er

B
ig

ge
r

Screen Capture

•  w01_sync
•  w02_syscall
•  w03_stdio

10/4/16 CS61 Fall 2016 6

Where oh were are the SW caches?

10/4/16 CS61 Fall 2016 7

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

Flash Drive

Disk Drive

B
ig

ge
r

Fa
st

er
 (M

or
e

E
xp

en
si

ve
) Let’s put a cache

here to hide how
slow persistent
storage is!

Where oh were are the SW caches?

10/4/16 CS61 Fall 2016 8

Registers

L1 Cache

L2 Cache

L4 Cache

L3Cache

Main Memory

Flash Drive

Disk Drive

B
ig

ge
r

Fa
st

er
 (M

or
e

E
xp

en
si

ve
)

In fact, let’s put
TWO caches
there!

OS cache (shared
among all
processes)

Per-process
caches

An Abstract Cache

10/4/16 CS61 Fall 2016 9

Cache

Data Source

Application

Read data Write data

Reading from the cache: HIT

10/4/16 CS61 Fall 2016 10

Cache

Data Source

Application

Reading from the cache: MISS

10/4/16 CS61 Fall 2016 11

Cache

Data Source

Application

1. Please read foo

2. Do I have that item?

6. Here you go.

Decisions: Servicing misses (blocksize)

10/4/16 CS61 Fall 2016 12

Cache

Data Source

Application

1. Please read foo

2. Do I have that item?
3. No!

4. May I have foo?
5. Here you go.

6. Here you go.

How much data should I return?

How much data should I return?

•  Most storage devices have a native size for data
access and/or transmission, e.g., disk block (4 KB).

•  Recall: HW caches also have a unit they use to
transfer data to/from the cache:
•  Cache lines: typically 64 or 128 bytes.

•  Block size: the unit in which data is stored in a cache.
•  HW caches: 64 bytes
•  File system caches: 4+ KB
•  Object caches: size of the object

10/4/16 CS61 Fall 2016 13

Decisions: A full cache (eviction)

10/4/16 CS61 Fall 2016 14

Cache

Data Source

Application

1. Please read foo

2. Do I have that item?
3. No!

4. May I have foo?
5. Here you go.

6. Here you go.

What do I do when I run out of space?

What do I do when I fill up?

•  A cache has a limited capacity.
•  At some point, the application will fill the cache and

request another item.
•  Caching the new item requires evicting some other

item.
•  What item do I evict?

•  We need an eviction policy
•  The available decisions here vary between hardware and

software.

10/4/16 CS61 Fall 2016 15

Eviction in Hardware
•  A cache is comprised of some number of slots (locations

in the cache, each of which can hold a cache line or cache
block).

•  The hardware often limits the number of possible slots in
which an item can be placed.

•  Call the number of slots in which a particular item can be
placed A. Let N be the total number of slots in the cache.
•  A = 1: Direct mapped: each object can live in exactly one slot in

the cache, so you have no choice but to evict the item in that
slot.

•  A > 1, A << N: A-way set associative: an object can live in one
of A slots; A is typically 2, 4, or 8. On eviction, choose randomly
from among the A slots.

•  A = N: Fully associative: an object can live in any slot.

10/4/16 CS61 Fall 2016 16

Eviction in Software
•  In software, we almost always have a fully associative cache.
•  In a perfect world, we’d like to evict the item that is least

valuable.
•  In the real world, we don’t know what that item is.
•  Practically all software caches try to approximate this ideal.

•  LRU: Least-recently-used – find the item that has been unused the
longest and get rid of that.

•  FIFO: First-in-first-out – find the item that has been in the cache the
longest.

•  LFU: Least-frequently-used – find the item that has been used less
frequently and get rid of that.

•  Clock: Used in virtual memory systems to approximate LRU, take
CS161 for details.

•  Something tuned to known access patterns.

10/4/16 CS61 Fall 2016 17

Evaluating a Cache: Hit Ratio

•  Hits are much better than misses!
•  We measure the efficiency of a cache in terms of its

cache hit rate:
•  # cache hits / # cache accesses
•  # cache hits / (# cache hits + # cache misses)

•  Example:
•  I access my cache 1000 times and have 400 hits.

•  My cache hit rate is 400/1000 = 40%

•  Good performance requires high cache hit rates.

10/4/16 CS61 Fall 2016 18

More than one way to get a hit …

•  If you touch the same item more than once, you get a
hit, but there is another way to get a hit.

•  Think about the fact that your cache is organized in
blocks…

•  Consider this:
•  Let’s say you are accessing an array of 4-byte integers.
•  A cache line is 64 bytes.

•  Here is the question:
•  Let’s say that you have 160 items in the array and you’ve

never accessed it before, how many cache misses will you
take?

10/4/16 CS61 Fall 2016 19

Fun With Eviction

•  Consider the following set of references to cache
blocks:

1 2 3 1 1 2 4 5 2 1 4

•  Live People Demo!

10/4/16 CS61 Fall 2016 20

