
CS61 Section Notes
Week 7 (Fall 2010)

Virtual Memory
We are given a system with the following properties:

• The memory is byte addressable.

• Memory accesses are to 4-byte words

• Physical addresses are 16 bits wide.

• Virtual addresses are 20 bits wide.

• The page size is 4096 bytes.

• The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB
and the page table for the first 32 pages are as follows:

TLB Page Table

Index Tag PPN Valid VPN PPN Valid VPN PPN Valid

0

03 B 1 00 7 1 10 6 0

07 6 0 01 8 1 11 7 0

28 3 1 02 9 1 12 8 0

01 F 0 03 A 1 13 3 0

1

31 0 1 04 6 0 14 D 0

12 3 0 05 3 0 15 B 0

07 E 1 06 1 0 16 9 0

0B 1 1 07 8 0 17 6 0

2

2A A 0 08 2 0 18 C 1

11 1 0 09 3 0 19 4 1

1F 8 1 0A 1 1 1A F 0

07 5 1 0B 6 1 1B 2 1

3

07 3 1 0C A 1 1C 0 0

3F F 0 0D D 0 1D E 1

10 D 0 0E E 0 1E 5 1

32 0 0 0F D 1 1F 3 1

Question 1a: The box below shows the format of a virtual address. Indicate (by labeling
the diagram) the fields that would be used to determine the following:

1

VPO The virtual page offset

VPN The virtual page number

TLBI The TLB index

TLBT The TLB tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

TLBT TLBI

Question 1b: The box below shows the format of a physical address. Indicate (by
labeling the diagram) the fields that would be used to determine the following:

PPO The physical page offset

PPN The physical page number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

2

For the given virtual addresses, indicate the TLB entry accessed and the physical address.
Indicate whether the TLB misses and whether a page fault occurs.

If there is a page fault, enter "-" for "PPN" and leave part C blank.

Virtual address: 0x7E37C

Question 2a: Virtual address format (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0

Question 2b: Address translation

Parameter Value

VPN 0x7E

TLB Index 0x2

TLB Tag 0x1F

TLB Hit? (Y/N) yes

Page Fault? (Y/N) no

PPN 0x8

Question 2c: Physical address format (one bit per box)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0

3

Virtual address: 0x16A48

Question 3a: Virtual address format (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0

Question 3b: Address translation

Parameter Value

VPN 0x16

TLB Index 0x2

TLB Tag 0x5

TLB Hit? (Y/N) no

Page Fault? (Y/N) yes

PPN 0x-

Question 3c: Physical address format (one bit per box)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4

4. Doesn’t virtual memory ruin locality, since now blocks of memory that are
contiguous in virtual memory may be spread far apart in physical memory? Why
is locality still important?

Pages (~4K) tend to be larger than cache blocks (~128 bytes), so consecutive blocks of
virtual memory will still likely be consecutive in physical memory.

More about Caching

Questions:
5. Why don't we include the tags bits when measuring a cache's size?

The tag bits (and the valid bit) do not hold any cache data so they are not counted in the
size of the cache.

6. Why are the s bits chosen from the middle of the address? Why not just use the s
high bits?

If the high-order bits are used as an index, than some contiguous memory blocks will
map to the same cache set. If the middle bits are used, adjacent blocks always map to
different cache lines.

5

Set Associative Caches
The code we saw last week causes the cache to thrash. A cache thrashes when it
repeatedly loads and then evicts the same set of cache blocks. We can alleviate this issue
with a cache that has more than one cache line per set. A cache with 1 < E < C/B is called
an E-way set associative cache.

Example:
Consider a 128 byte, 2-way set associative cache where each cache line contains 16 bytes
on a 16-bit processor with 216 addressable bytes of memory, and assume the cache is
initially empty (the valid bits are all zero). Let's walk through how accessing the memory
locations 0x10, 0x20, 0x53 and 0x98, in that order, interacts with the cache.

Here is how the addresses are partitioned into tag bits, set index bits and block offset bits:

Address t Tag bits s Set index bits b Block offset bits

0x10 0000000000 01 0000

0x21 0000000000 10 0001

0x53 0000000001 01 0011

0x98 0000000010 01 1000

1. When we access address 0x10, we look in set index 1 for a valid entry with tag 0.
Because the cache is empty, we have a cache miss. The processor will load the
cache from main memory with the 16 bytes starting at location 0x10, add an entry
to set 1 with tag 0, and return byte 0 from the newly-loaded cache block.

2. The processor then looks in set 2 for a valid entry with tag 0. Again, no such entry
is found, so the cache is loaded from memory and the byte at offset 1 from the
newly-loaded memory block is returned.

3. Address 0x53 maps to set 1, just as address 0x10 did. Unfortunately it cannot be
found in the valid cache block belonging to set 1 because its tag bits don't match
the entry placed in the cache when 0x10 was loaded. Because this is a two-way
set associative cache, there is room for two separate cache lines in set 1, so the 16
bytes of memory starting at address 0x50 are loaded into the one remaining empty
cache line in set 1. Set 1 now has two valid cache lines.

4. Address 0x98 also maps to set 1, but its tag bits do not match either of the two
valid cache lines belonging to set 1, so one of them must be ejected. Assuming an
LRU policy, the cache line with tag 0x0 is ejected because it was loaded first. The
processor replaces this entry with one containing the tag bits 0x2, loads 16 bytes
from main memory starting at address 0x90 into the cache block, and returns the
byte at offset 8.

6

Another Example

Now suppose we have a cache for a byte-addressable memory where physical addresses
are 12 bits wide. The contents of this 4-way set-associative cache consisting of 32 2-byte
lines is shown below. Each line in the table shows four cache lines, one set.

 4-way Set Associative Cache
 Line 0 Line 1 Line 2 Line 3
 Set Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1
 0 29 0 34 29 87 0 39 AE 7D 1 68 F2 8B 1 64 38
 1 F3 1 0D 8F 3D 1 0C 3A 4A 1 A4 DB D9 1 A5 3C
 2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
 3 3B 0 AC 1F E0 0 B5 70 3B 1 66 95 37 1 49 F3
 4 80 1 60 35 2B 0 19 57 49 1 8D 0E 00 0 70 AB
 5 EA 1 B4 17 CC 1 67 DB 8A 0 DE AA 18 1 2C D3
 6 1C 0 3F A4 01 0 3A C1 F0 0 20 13 7F 1 DF 05
 7 0F 0 00 FF AF 1 B1 5F 99 0 AC 96 3A 1 22 79

7. What happens when the physical address 0x3B6 is looked up in the cache?

Given the attributes of the cache, we can determine that the first 8 bits of the address are
used for the tag, the next 3 for the index, and the last 1 for the offset, meaning that our
tag, set, and offset are 0x3B, 0x3, and 0x0, respectively. Looking up 0x3B in the third set,
we see a valid entry with the value 0x66 in its first byte (zeroth offset).

8. What happens when the physical address 0x1CC is looked up in the cache?

Similar to the previous exercise, we have tag, set, and offset of 0x1C, 0x6, and 0x0. The
entry for 0x1C in set 6 is not valid, so the value would have to be fetched from a higher-
level cache.

Questions:

9. A set associative cache has more than one cache line per set, so line matching is
more complex. How is the time line matching takes related to the number of lines
in a set?

In general, it is hard to say how much extra time line matching takes for a set associative
cache, since its highly dependent on how it is implemented in hardware. Most likely, it is
slower since it requires more tag bits per line and additional control logic. In particular, it
may increase hit time. It can also increase the miss penalty because of increased
complexity in choosing a victim line.

10. My 128 bytes cache has a 16 byte cache lines, 4 sets, and 8 cache lines in total.
What is the name for this kind of cache?

It is called a 2-way set associative cache

7

Cache Performance

Analysis
In class we measured the sizes of various caches by writing to larger and larger ranges of
sequential memory addresses in a stride-1 pattern. When the delay rose significantly, we
knew that we were using a different (slower, but larger) cache.

11. How much of an effect do you think the associativity of a cache has on the test
program's measurement? If you were going to take a shortcut and use longer
strides, how might associativity affect your results?

If you have stride-1 memory access, the associativity of the cache has little effect. If you
have longer strides, increasing your associativity will improve performance.

Tuning
12. If you had a cache with a low associativity (think direct-mapped), would you

rather have a program with good spatial locality or good temporal locality (but not
both)?

Spatial locality.

13. What if you had high associativity?

The higher the associativity of the cache, the less dependent the cache is on spatial
locality.

14. In class, we've mostly thought about caches in terms of a data cache. However, we
typically will also have a separate instruction cache. Is loop unrolling good or bad
for instruction cache performance? How much would you want to unroll your
loops for the best performance?

Loop unrolling is bad for instruction cache performance . In the best case you would
unroll your loops to fill the instruction cache but no more.

15. How might you organize your program so that it has good instruction cache
behavior if you know certain blocks of code are more likely to be called than
others?

You would put them as close together as possible.

8

