
CS61 Section Notes With Solutions
Week 4 (Fall 2011)
 
Outline for this week:
 
Processor Architecture
    •   Logic gates
    •   Instruction encoding
    •   Sequential processing with stages
    •   Pipelining
 
Program Optimization
    •    Code motion
    •    Memory accesses
    •    Loop unrolling
    •    Pipelining
    •    Demo of efficiency gains
 
All page numbers cited below refer to the course textbook, Computer Systems: A Programmer's 
Perspective, Second Edition by Randal E. Bryant and David R. O'Hallaron.
 
Processor Architecture 
 
1. Logic gates

AND OR NOT
 
Warm up:  Fill in the truth table below for NAND. 
To the right, design a circuit for bit-level NAND using OR and NOT gates.
 
We implement NAND using a circuit equivalent to the expression !a || !b.
 

 
 

 



In class, we introduced a circuit for XOR. Suppose you want to implement a word-level equality 
circuit using XOR rather than from bit-level equality circuits.  Design such a circuit for a 32-bit 
word consisting of 32 bit-level XOR circuits and two additional logic gates.1 (Assume that you 
can have up to 32 inputs to AND and OR gates.)
 

 

 
 
What determines the length of time to evaluate a circuit?  
 
The time it takes for a signal to propagate through a logic gate is much greater than the time it takes to 
propagate through the wire between gates. Thus, the timing specification of a combinational circuit 
is approximately the time for a single logic gate to produce stable output from stable input signals, 
multiplied by the circuit depth (i.e., the maximum number of logic gates on any path from input to 
output).
 
 
 
 
 
 

1Adapted from Practice Problem 4.9, p. 356.

 



2. Instruction encoding
 
Consider the instruction set, register identifiers, and function codes depicted below.  These 
are from the Y86 instruction set architecture introduced in the book.  It is NOT important to 
memorize the details of Y86, which is inspired by IA32 but simpler and reduced in design.  The 
point of the following exercises is simply to get a taste of instruction encoding and decoding.
 
Instruction set. Register identifiers.

 
 
Function codes.

 

 



Determine the byte encoding of the following instruction sequence.  Using the byte encodings 
that you compute, also determine the addresses of the instructions below, as well as a 
hypothetical next instruction. 2 The first instruction (irmovl $15, %ebx) starts at address 
0x100.
 
 

0x100 : 30f3 0f00 0000             | irmovl $15, %ebx # Load 15 into %ebx

 

 

0x106 : 2031                       | rrmovl %ebx, %ecx # Copy 15 into %ecx

 

 

0x108 : next_encoding      | next_operation   

 
Some features of the encoding are worth noting:
 
(1) Decimal 15 in hex is 0x0000000f. Writing the bytes in reverse order gives 0f 00 00 00. 
 
(2) The code starts at address 0x100. The first instruction requires 6 bytes, while the second requires 
2, so the next instruction will be at 0x108.  
 
For the byte sequence below, determine the instruction sequence it encodes.  We show the 
starting address, then a colon, then the byte sequence.3
 
0x400: 6113 7300 0400 0000

 

The above encoding contains a jump operation:
 

0x400: | loop:

0x400: 6113 | subl %ecx, %ebx

0x402: 7300 0400 00 | je loop

0x407: 00 | halt

 
 
 
 
 
 
 
 
 
 
 

2Adapted from Practice Problem 4.1, p. 341.
3Adapted from Practice Problem 4.2, p. 341.

 



3. Sequential processing with stages4

 
Consider a sequential processor that executes in stages.  Some of the hardware units for the 
stages have state that may be updated during the execution of an instruction. Indicate which of 
the following hardware units hold state that might be updated:

 
Program counter (PC) __________ Arithmetic logic unit (ALU) __________
 
Condition code register (CC) __________ Data memory __________
 
Register file __________ Instruction memory __________
 
The PC, CC, register file, data memory are all state elements.  Computations propagate through the 
ALU but do not set any state.  Instruction memory is only used to read instructions. 
 
The sequential processor introduced in class and the textbook breaks the processing of a 
single instruction into six stages:  Fetch, Decode, Execute, Memory, Write back, and PC update.  
Consider the processing of a single instruction.  Do the stages update state in a serial fashion, 
i.e. do the stages update state in some order?  When do these updates occur? 
 
No, all state updates occur simultaneously, and only when the clock rises to start the processing of the 
next instruction. (p. 380)
 
Principle:  The processor never needs to read back the state updated by an instruction in order to 
complete the processing of this instruction.  For example, some instructions (integer operations) set 
condition codes, and some instructions (jumps) read condition codes, but no instruction both sets and 
reads condition codes.  This way, the condition codes are always up-to-date before another instruction 
needs to read them.  (p. 380-1)
 
 
4. Pipelining
 
The latency of a stage is the time required to execute that stage.  Throughput is the rate at which 
stages are executed, and so latency is equal to the inverse of throughput. E.g., If a car wash has a 
throughput of 2 cars per minute, its latency is ½ minutes = 30 seconds.
 
Suppose a pipelined processor executes N stages in parallel.  Label the stages s1, s2, …, 
sN such that t1 < t2 < … < tN, where ti is the latency of stage i.  What is the throughput of the 
processor when executing all N stages in parallel?
 
The throughput is limited by the slowest stage.  This is an important concept to keep in mind when 
thinking about parallelization in general.  The slowest stage has latency tN.  Since throughput = 1 / 
latency, the overall throughput is 1 / tN. 
 
 

4Material and language from Section 4.3.

 



Pipelining divides a computation into separate stages separated by pipeline registers. What 
happens as we divide the computation into increasingly shorter stages?
 
Deeper pipelining yields diminishing returns as throughput becomes limited by the time required to load 
pipeline registers. 
 
 
Program Optimization  
 
Ideally, a compiler should be able to take any code and generate the most efficient machine-level 
program with the correct behavior. In reality, compilers can only perform limited transformations like 
code motion, strength reduction, loop unrolling, etc. Even these transformations can be thwarted by 
optimization blockers – aspects of of the program's behavior that depend strongly on the execution 
environment.
 
Consider the following C code...
 
struct vector {

int length;

int *data;

}

 

typedef struct vector *vec_ptr;

int get_vec_length(vec_ptr v);

int *get_vec_data(vec_ptr v);

 

/* Multiply the elements of a vector. */

void multiply1(vec_ptr v, int *dest) {

int i;

int *data = get_vec_data(v);

 

*dest = 1;

for (i = 0; i < get_vec_length(v); i++) {

*dest = *dest * data[i];

}

}

 

In this section, we will consider what optimizations are possible here.
 
 
 
 
 
 
 
 
 
 
 
 
 

 



1. Code Motion - Move code around to reduce the number of times it executes.
 
The call get_vec_length(v) can be moved outside the loop, because we know the length of the 
vector won’t change from one iteration to the next.
 
void multiply2(vec_ptr v, int *dest) {

int i;

int *data = get_vec_data(v);

int length = get_vec_length(v);

 

*dest = 1;

for (i = 0; i < length; i++) {

*dest = *dest * data[i];

}

}

Could gcc -01 make this optimization? If not, why not, and could we change anything to help?
 
gcc -01 cannot make this optimization because optimization is typically within-function; from within 
multiply, the procedure call to get_vec_length appears as a “black box” with unknown properties. 
If get_vec_length were declared as inline, then the compiler would copy its code into multiply 
and presumably notice this optimization. At higher levels of optimization such as gcc -02,  the 
compiler attempts to aggressively inline functions.
 
2. Reduce Memory Access 
 
Introduce local variable x to store intermediate computations, and copy the result at the end to *dest.
 

void multiply3(vec_ptr v, int *dest) {

int i;

int *data = get_vec_start(v);

int length = vec_length(v);

int x = 1;

 

for (i = 0; i < length; i++) {

x = x * data[i];

}

*dest = x;

}

 
Why is this an optimization?
 
Memory accesses are slow! Storing things locally when possible can give big efficiency improvements.
 
Could gcc make this optimization? If not, why not?
 
gcc cannot make this optimization because it changes the meaning of the code. If dest points 
somewhere inside data, then multiply3 may produce a different result than multiply1. It is always 
important to consider the scenario in which pointers alias the same data.
 

 



3. Loop Unrolling - Decrease the number of iterations by doing more work per iteration.
 
Consider the following implementation of multiply (assume length % 2 == 0).
 
void multiply4(vec_ptr v, int *dest) {

int i;

int *data = get_vec_start(v);

int length = vec_length(v);

int x = 1;

int y = 1;

 

for (i = 0; i < length; i += 2) {

x = x * data[i];

y = y * data[i + 1];

}

*dest = x * y;

}

 
This implementation is even more efficient! Why? (There are two principal reasons.)
 
(1) Loop unrolling reduces the amount of per-iteration overhead of managing the loop, such as the jmp 
instruction. 
 
(2) It also increases processor pipeline parallelism. In multiply3, each multiplication of x depends on 
the previous multiplication, so the next multiplication cannot start until the previous one has finished. In 
multiply4, x and y are independent registers and can be pipelined simultaneously.
 
Wouldn’t it be even better to unroll the loop more, say to i += 20?
 
Loop unrolling has significant diminishing returns: in particular, an x86 only has 8 registers. If our 
unrolled loop has to use memory to store values, it becomes much less efficient.
 
A Practical Note - Loop unrolling and taking advantage of pipelining are examples of optimizations that 
can be very hard for human programmers to implement effectively in practice.  Additionally, we usually 
can rely on our compiler to do these types of optimizations for us! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Interactive Optimization Demo
 
At this point, please open up your laptops and follow the instructions below, substituting your username 
for user where appropriate. First, ssh to your CS 61 VM. Copy the file from Prof Chong’s home 
directory to your own:
 

$ cp ~stephenchong/optimization.tar ~

 
You should now have a file called optimization.tar in your home directory. Let’s extract the files in the 
tar.
 

$ tar xvf optimization.tar

$ cd optimization

 
This code is a function that implements a simple substitution cipher. It's pretty silly code, and there are 
dummy functions intended to let you practice various optimizations in the file. Get in small groups and 
discuss the types of optimizations you might implement! 
 
Take a look at the file benchmark.c, in particular the function run_benchmarks() at the bottom of 
the file. As you can see, this function benchmarks a series of implementations of the substitution cipher: 
cipher_orig, cipher_better, cipher_faster, and cipher_fast. Let’s run the benchmarks.
 
To run the benchmarks without compiler optimization (i.e., with -O0), type:

$ make run

 
To run the benchmarks with compiler optimization (i.e., with -O3), type:

$ make run-opt

 
Initially, all four of the cipher functions do the same thing, so running it should give very similar results 
for all four trials.
 
Take a look at the code for cipher_orig. Do not edit this function: it is used to provide a 
baseline for the improvements you’ll be making. You’ll be editing the functions: cipher_better, 
encode_char_better, cipher_faster, and cipher_fast (in that order). Follow the instructions 
in the comments in benchmark.c and from your TF. Feel free to look in support.c to inspect the 
main driver routine, including timing, etc.
 
When you're done implementing your optimizations, come back together and discuss what you tried, 
what worked, what didn't, and what things the compiler optimizations took care of for you.
 
A couple of final take-away points:
    •  Readability/maintainability is often more important than minor optimizations.
    •  The compiler is often smarter than you are.
    •  Low-level things like loop unrolling are often architecture-dependent, and should be done only with 
extreme caution! Nevertheless, it's good to understand how the CPU works.
    •  Be sure you know what you're optimizing and why before you start. It's easy to waste days only to 
realize that all your hard work was unimportant in the grander scheme of things.
    •  Testing is even more key. It doesn't matter how fast your code runs if it doesn't work! 

 



 
EXTRA BONUS SECTION
 
Program Optimization (continued)
 
4. Pipelining - Take advantage of how the machine pipelines instructions.
 
Pipelining, the process of starting the next instruction before the previous one has finished, can be 
extremely useful, especially when you're looking at expensive operations like multiplication, but it won't 
work if the operations need to be executed in sequence.
 
Consider the following C code...
 

void copy_array(int *src, int*dest, int n) {

int i;

for (i = 0; i < n; i++)

dest[i] = src[i];

}

int a[1000] = {0, 1, 2, ..., 999};

 

It turns out copy_array(a+1, a, 999); executes about twice as fast as
copy_array(a, a+1, 999);. Why is this?
 
copy_array(a, a+1, 999); copies a[0] to a[1], a[1] to a[2], etc. Conversely, copy_array(a+1, 
a, 999); copies a[1] to a[0], a[2] to a[1], etc. In the former case, a[1] is stored in iteration one and 
loaded in iteration two; in the latter case, a[1] is loaded in iteration one and stored in iteration two. 
Loading occurs early in the processor pipeline, and storage occurs late. So in the former case, iteration 
two waits early for something late in iteration one; whereas in the latter case, iteration two waits late for 
something early in iteration one.
 
 

 


