
CS61 Section Notes
Week 4 (Fall 2011)
 
Outline for this week:
 
Processor Architecture
    •   Logic gates
    •   Instruction encoding
    •   Sequential processing with stages
    •   Pipelining
 
Program Optimization
    •    Code motion
    •    Memory accesses
    •    Loop unrolling
    •    Pipelining
    •    Demo of efficiency gains
 
All page numbers cited below refer to the course textbook, Computer Systems: A Programmer's 
Perspective, Second Edition by Randal E. Bryant and David R. O'Hallaron.
 
 
Processor Architecture 
 
1. Logic gates
 

AND OR NOT
 
Warm up:  Fill in the truth table below for NAND.  
 
To the right, design a circuit for bit-level NAND using OR and NOT gates.
 
 
a b a NAND b

0 0  

0 1  

1 0  

1 1  
 
 



In class, we introduced a circuit for XOR. Suppose you want to implement a word-level equality 
circuit using XOR rather than from bit-level equality circuits.  Design such a circuit for a 32-bit 
word consisting of 32 bit-level XOR circuits and two additional logic gates.1 (Assume that you 
can have up to 32 inputs to AND and OR gates.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What determines the length of time to evaluate a circuit?  
 
 
 
 
 
 
2. Instruction encoding
 
Consider the instruction set, register identifiers, and function codes on the next page.  These 
are from the Y86 instruction set architecture introduced in the book.  It is NOT important to 
memorize the details of Y86, which is inspired by IA32 but simpler and reduced in design.  The 
point of the following exercises is simply to get a taste of instruction encoding and decoding.
 
Determine the byte encoding of the following instruction sequence.  Using the byte encodings 
that you compute, also determine the addresses of the instructions below, as well as a 
hypothetical next instruction. The first instruction (irmovl $15, %ebx) starts at address 
0x100.2 
 
 
0x100  :_______________________| irmovl $15, %ebx # Load 15 into %ebx
 
 
 
0x_____:_______________________| rrmovl %ebx, %ecx # Copy 15 into %ecx
 
 
 
0x_____: next_encoding     | next_instruction   
 

1Adapted from Practice Problem 4.9, p. 356.
2Adapted from Practice Problem 4.1, p. 341.



 
Instruction set. Register identifiers.
 

 

 
Function codes.

 
 
 
 
 
 



For the byte sequence below, determine the instruction sequence it encodes.  We show the 
starting address, then a colon, then the byte sequence.3
 
0x400: 6113 7300 0400 0000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Sequential processing with stages4

 
Consider a sequential processor that executes in stages.  Some of the hardware units for the 
stages have state that may be updated during the execution of an instruction. Indicate which of 
the following hardware units hold state that might be updated:

 
Program counter (PC) __________ Arithmetic logic unit (ALU) __________
 
Condition code register (CC) __________ Data memory __________
 
Register file __________ Instruction memory __________
 
The sequential processor introduced in class and the textbook breaks the processing of a single 
instruction into six stages:  Fetch, Decode, Execute, Memory, Write back, and PC update.  
Consider the processing of a single instruction.  Do the stages update state in a serial fashion, 
i.e. do the stages update state in some order?  When do these updates occur? 
 
 
 
 
Principle:  The processor never needs to read back the state updated by an instruction 
in order to complete the processing of this instruction.  For example, some instructions 
(integer operations) set condition codes, and some instructions (jumps) read condition codes, 
but no instruction both sets and reads condition codes.  This way, the condition codes are 
always up-to-date before another instruction needs to read them.  (p. 380-1)

3Adapted from Practice Problem 4.2, p. 341.
4Material and language from Section 4.3.



 
4. Pipelining
 
The latency of a stage is the time required to execute that stage.  Throughput is the rate at 
which stages are executed, and so latency is equal to the inverse of throughput. E.g., If a car 
wash has a throughput of 2 cars per minute, its latency is ½ minutes = 30 seconds.
 
Suppose a pipelined processor executes N stages in parallel.  Label the stages s1, s2, …, 
sN such that t1 < t2 < … < tN, where ti is the latency of stage i.  What is the throughput of the 
processor when executing all N stages in parallel?
 
 
 
 
Pipelining divides a computation into separate stages separated by pipeline registers. What 
happens as we divide the computation into increasingly shorter stages?
 
 
 
 
 
Program Optimization  
 
Ideally, a compiler should be able to take any code and generate the most efficient 
machine-level program with the correct behavior. In reality, compilers can only perform 
limited transformations like code motion, strength reduction, loop unrolling, etc. Even these 
transformations can be thwarted by optimization blockers – aspects of of the program's behavior 
that depend strongly on the execution environment.
 
Consider the following C code...
 
struct vector {

int length;
int *data;

}
typedef struct vector *vec_ptr;
int get_vec_length(vec_ptr v);
int *get_vec_data(vec_ptr v);
 
/* Multiply the elements of a vector. */
void multiply1(vec_ptr v, int *dest) {

int i;
int *data = get_vec_data(v);

 
*dest = 1;
for (i = 0; i < get_vec_length(v); i++) {

*dest = *dest * data[i];
}

}
 
Below, we will consider what optimizations are possible here.



 
 
1. Code Motion - Move code around to reduce the number of times it executes.
The call get_vec_length(v) can be moved outside the loop, because we know the length of 
the vector won’t change from one iteration to the next.
 
void multiply2(vec_ptr v, int *dest) {

int i;
int *data = get_vec_data(v);
int length = get_vec_length(v);

 
*dest = 1;
for (i = 0; i < length; i++) {

*dest = *dest * data[i];
}

}
Could gcc -01 make this optimization? If not, why not, and could we change anything to help?
 
 
 
 
 
 
 
2. Reduce Memory Access 
Introduce a local variable, x, to store intermediate computations, and copy the final result at the 
end to *dest.
 
void multiply3(vec_ptr v, int *dest) {

int i;
int *data = get_vec_start(v);
int length = vec_length(v);
int x = 1;

 
for (i = 0; i < length; i++) {

x = x * data[i];
}
*dest = x;

}
Why is this an optimization?
 
 
 
 
 
Could gcc make this optimization? If not, why not?
 
 
 



3. Loop Unrolling - Decrease the number of iterations by doing more work per iteration.
 
Consider the following implementation of multiply (assume length % 2 == 0).
 
void multiply4(vec_ptr v, int *dest) {

int i;
int *data = get_vec_start(v);
int length = vec_length(v);
int x = 1;
int y = 1;

 
for (i = 0; i < length; i += 2) {

x = x * data[i];
y = y * data[i + 1];

}
*dest = x * y;

}
This implementation is even more efficient! Why? (There are two principal reasons.)
 
 
 
 
 
 
 
 
 
 
 
Wouldn’t it be even better to unroll the loop more, say to i += 20?
 
 
 
 
 
 
 
A Practical Note - Loop unrolling and taking advantage of pipelining are examples of 
optimizations that can be very hard for human programmers to implement effectively in practice.  
Additionally, we usually can rely on our compiler to do these types of optimizations for us! 
 
 
 
 
 
 
 
 
 
 



Interactive Optimization Demo
 
At this point, please open up your laptops and follow the instructions below, substituting your 
username for user where appropriate. First, ssh to your CS 61 VM. Copy the file from Prof 
Chong’s home directory to your own:
 

$ cp ~stephenchong/optimization.tar ~
 
You should now have a file called optimization.tar in your home directory. Let’s extract the files 
in the tar.
 

$ tar xvf optimization.tar
$ cd optimization
 

This code is a function that implements a simple substitution cipher. It's pretty silly code, and 
there are dummy functions intended to let you practice various optimizations in the file. Get in 
small groups and discuss the types of optimizations you might implement! 
 
Take a look at the file benchmark.c, in particular the function run_benchmarks() at the 
bottom of the file. As you can see, this function benchmarks a series of implementations of the 
substitution cipher: cipher_orig, cipher_better, cipher_faster, and cipher_fast. 
Let’s run the benchmarks.
 
To run the benchmarks without compiler optimization (i.e., with -O0), type:

$ make run
 
To run the benchmarks with compiler optimization (i.e., with -O3), type:

$ make run-opt
 
Initially, all four of the cipher functions do the same thing, so running it should give very similar 
results for all four trials.
 
Take a look at the code for cipher_orig. Do not edit this function: it is used to provide 
a baseline for the improvements you’ll be making. You’ll be editing the functions: 
cipher_better, encode_char_better, cipher_faster, and cipher_fast (in that 
order). Follow the instructions in the comments in benchmark.c and from your TF. Feel free to 
look in support.c to inspect the main driver routine, including timing, etc.
 
When you're done implementing your optimizations, come back together and discuss what you 
tried, what worked, what didn't, and what things the compiler optimizations took care of for you.
 
A couple of final take-away points:
    •  Readability/maintainability is often more important than minor optimizations.
    •  The compiler is often smarter than you are.
    •  Low-level things like loop unrolling are often architecture-dependent, and should be done 
only with extreme caution! Nevertheless, it's good to understand how the CPU works.
    •  Be sure you know what you're optimizing and why before you start. It's easy to waste days 
only to realize that all your hard work was unimportant in the grander scheme of things.
    •  Testing is even more key. It doesn't matter how fast your code runs if it doesn't work! 
 



 
EXTRA BONUS SECTION
 
Program Optimization, continued
 
4. Pipelining - Take advantage of how the machine pipelines instructions.
 
Pipelining, the process of starting the next instruction before the previous one has finished, can 
be extremely useful, especially when you're looking at expensive operations like multiplication, 
but it won't work if the operations need to be executed in sequence.
 
Consider the following C code...
 
void copy_array(int *src, int*dest, int n) {

int i;
for (i = 0; i < n; i++)

dest[i] = src[i];
}
int a[1000] = {0, 1, 2, ..., 999};
 
It turns out copy_array(a+1, a, 999); executes about twice as fast as
copy_array(a, a+1, 999);. Why is this?
 
 


