
CS61: Systems Programing and Machine
Organization

Fall 2011

Section 3: Monday 26 September – Friday 30 September

Topics to be covered:
● Arrays
● Structs
● Buffer overflow

A terrible programmer (in this case one of the TFs) wrote the following code. It is designed to
generate information about students and fill that information into a data structure. Two of the
students, however, are celebrities, and therefore their information is sensitive. To generate their
data, a password must be provided.

1 #include <stdio.h>
2 #include <string.h>
3
4 struct student_t {
5 char name[3][7];
6 int age;
7 char grade;
8 };
9

10 struct student_t global_pair[2];
11
12 void generate_students(struct student_t *students[3]) {
13 struct student_t sally = {
14 {"Sally","Henthorn","Ro"},
15 15,
16 'B'
17 };
18 struct student_t psyche = {
19 {"Psyche","Lazy","Murphy"},
20 2,
21 'A'
22 };
23 struct student_t harvey = {
24 {"Harvey","Dexter","Glenn"},
25 2,
26 'A'
27 };
28
29 students[0] = &psyche;
30 students[1] = &harvey;
31 students[2] = &sally;
32 students += 1;
33
34 printf("%s %s %s\n", sally.name[0], sally.name[1],sally.name[2]);
35 }
36 void generate_secret_students(struct student_t *students[2],
37 char *password) {
38 struct student_t secret_1 = {
39 {"Secret","Oscar","Meyer"},
40 15,
41 'C'
42 };
43 struct student_t secret_2 = {
44 {"Secret","Betty","Crock"},
45 16,
46 'A'
47 };
48 char buffer[9];
49
50 strcpy(buffer, password);
51 if (!strcmp(buffer, "secure")) {
52 students[0] = &secret_1;
53 students[1] = &secret_2;
54 }
55 }
56

57 int main() {
58 struct student_t *students[3];
59 struct student_t *secret_students[2];
60 int sneaky_length = 9+sizeof(struct student_t)*2+4+4+1;
61 char sneaky[sneaky_length];
62
63 sneaky[sneaky_length-5] = 0xef;
64 sneaky[sneaky_length-4] = 0xbe;
65 sneaky[sneaky_length-3] = 0xad;
66 sneaky[sneaky_length-2] = 0xde;
67 sneaky[sneaky_length-1] = 0x0;
68
69 generate_students(students);
70 generate_secret_students(secret_students, sneaky);
71
72 printf("First student name: %s %s %s\n",
73 students[0]->name[0],
74 students[0]->name[1],
75 students[0]->name[2]);
76
77 return 0;
78 }

Assume this program is compiled for Linux using gcc running on an x86 processor.
Questions:

1. What is the layout of a struct student_t in memory?

2. If global_pair points to memory location 0x80049110, what memory location do each

of the following refer to?
a. global_pair[0].name

b. global_pair[0].name[0]

c. global_pair[0].name[1]

d. &(global_pair[0].grade)

e. &(global_pair[1].grade)

3. What will line 34 print and why?

4. What does the stack look like at the end of the generate_students() function?

5. What is the overall structure of the data pointed to by the argument “students” at the end
of the generate_students() function?

6. What is the overall structure of the data pointed to by the “students” array declared in

main()?

7. What will line 72 print and why?

8. What are lines 60 through 67 doing?

9. Why is sneaky_length the size that it is?

Pointers and Arrays
A supplement to Section Notes for Week 3.

In class, we learned that in C there is a strong relationship between pointers and arrays. Any
operation that can be achieved by array subscripting can also be achieved using pointers.

There are, however, differences between arrays and pointers.

An array declaration defines an array of the declared size. For example, int foo[5] defines
an array called foo that contains 5 integers. Declaration float bar[6][4], defines a
multidimensional array called bar that consists of 6 rows, and 4 columns, for a total of 24
floats. Declaration char *strings[10] defines an array called strings that contains 10
pointers.

You cannot assign to an array (e.g., foo = 4 is illegal, as is foo++). You can, however, use
an array in an expression, in which case it will evaluate to the address of the first element of the
array (e.g., int *x = foo; is equivalent to int *x = &foo[0];)

Note that if you declare an array as a local variable (e.g., void f(void) { int
foo[5]; ... }), the compiler will allocate space on the stack for the array (e.g.,
5*sizeof(int)bytes will be allocated in f’s stack frame). However, there will not be space
allocated for a pointer to the array (e.g., it is not the case that there is space on the stack for a
variable called foo that points to the array; foo is the array.)

Note also that a procedure argument that has an array type is actually a pointer. For example,
void f(char s[]) is equivalent to void f(char* s)(and the latter form is preferred). In
the body of procedure f, you can assign to the argument s, for example, s = s + 1;

To test your knowledge, figure out what the following code outputs, assuming that the address
of foo is 0x100.

int foo[3][4] = { {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12} };

void g(int a[], int *b) {
 printf(“Output 7: %x\n”, *a);
 printf(“Output 8: %x\n”, *b);

 a++;
 printf(“Output 9: %x\n”, *a);
 printf(“Output 10: %x\n”, *b);
}

int main(void) {
 printf(“Output 1: %x\n”, foo);
 printf(“Output 2: %x\n”, foo[1]);
 printf(“Output 3: %x\n”, &foo[1]);

 printf(“Output 4: %x\n”, foo[2]);
 printf(“Output 5: %x\n”, foo[1][2]);
 printf(“Output 6: %x\n”, &foo[1][2]);

 g(foo[2], foo[2]);
}

