CS61 Fall 2011 Section 2
Additional Notes on Condition Codes

1 Interpreting condition codes (status flags)

The cmp instruction sets the four condition codes (CF, ZF, SF, OF) according
to the difference between its two arguments. Subsequent operations can then
either set a value or conditionally jump based on the flags set.

Remember that in ATT syntax, cmpl src, dst compares dst to src. Thus
the following code jumps to .LO if %ebx < %eax rather than the other way
around.

cmpl fheax, %hebx
j1 .LO

So, how should the status flags be interpreted to implement j1 (jump if
signed less than)? Let’s derive it from the behavior of cmp.

First, remember that cmp S,D yields the same status flags as computing
sub S,D (D — 8). We consider two cases.

D — S does not overflow: Then —0OF is true. Furthermore, then if D < S, the
result will be negative. If D > S the result will be zero if they are equal,
or positive, if D > S.
Thus, if —=0F A SF is true, D < S. (Remember that SF is true when the
result is negative.)

D — S overflows: If D — S overflows, there are two possibilities: either D — S
is too large to represent (a positive overflow), or D — S is too small to
represent (a negative overflow).

In the first case, we know that D must be positive and S must be nega-
tive. We know this must be the case because if both were positive, there
would be no pair of values that give a result less than the minimum repre-
sentable signed negative (0 — MAX_INT > MIN_INT due to the asymmetry of
two’s complement). Likewise, if D were negative, there is no large enough
negative S to cause a postive overflow. If this is the case, we know then
that D # S.

In the second case, there is a negative overflow and it must be the case
that D is negative and S is positive, by a similar argument (left to the
reader). Thus D < S.



But how do we tell if the overflow is positive or negative? OF doesn’t
distinguish! We can tell by looking at the sign of the result. If there was
an overflow and the result is negative, then the correct result would have
been too large (so the overflow was positive). If the result is positive,
then the correct result was too small to represent (so the overflow was
negative). Thus, if we had an overflow, then D < S when —SF is true.
That is OF A —SF.

To reach the final answer, we combine these two cases:

D < S & (—0F A SF) V (OF A —SF)
D < S < (OF & SF)

By a similar process, we can work out the correct logic for other comparison
operations. A listing of the results is given in the book and in the lecture
slides. You needn’t worry too much about exactly which flags are used for each
operation, but its good to know how it really works in the processor!

2 OF versus CF

OF is the signed overflow flag. CF is the unsigned overflow flag. Because most
arithmetic operations work for both signed and unsigned numbers, we must
always set both OF and CF appropriately. That way a later instruction can
apply its own interpretation and look at the appropriate flag.

A simple way to think about when each flag should be set is to imagine the
number line of representable values for each interpretation.

2.1 Example: CF A —0F

Suppose we are computing 1100 + 0101 = 0001. Lets consider the computation
in each interpretation.

Unsigned: 1245 =17
If we consider this with an unsigned interpretation, we start at 12 and
move right (since we're adding a positive number). Once we exhaust the
representable values, we “wrap around” to the bottom, arriving at positive
1. Thus, we’ve overflowed the representable values of our unsigned integers
and don’t get the expected value. CF should be set.

Signed: —4+5=1 0 o 10 15

In a signed interpretation, we start at —4 and move right (since we’re still
adding a positive number). No overflow occurs and we get 1.

<
n
Y

So for 1100 + 0101 = 0001 we have CF and —OF."



2.2 Example: —0F A CF
Let’s consider another example: 0111 + 0001 = 1000.

Unsigned: 74+ 1=38
If we consider this with an unsigned representation, we start at 7 and
move right 1. No overflow occurs and we get the expected answer, 8. CF
is not set.

1=ttt

0 5 10 15
Signed: 7+1=38

In a signed interpretation, we start at 7 and move 1 right. Unfortunately,
7 is the largest representable signed integer, so the computation wraps
around to —8—an overflow. The OF is set.

—=——t—+—F+—"F—"F+—+—++—+—"+"+"1—"F=>

-5 0 5
In this case, 0111 4+ 0001 = 1000, we have OF A —CF.

2.3 Example: OF A CF
Finally, let’s look at 1111 4+ 1000 = 0111.

Unsigned: 15+ 8 = 23
If we consider this unsigned, we start at 15 and move right 8. But 15
is already the maximum representable integer, so we wrap around to 7.
Since this is an overflow, CF is set.

0 5 10 15
Signed: —1+ —-8=-9
In a signed representation, we start at —1 and move 8 to the left since
we're adding a negative number. The result we expect, —9 is too small a
negative number and wraps around to 7. This is a negative overflow so OF
is set.

In this case, both OF and CF are set.



