
CS61 Fall 2011 Section 2

Additional Notes on Stack Layout

1 Stack layout

Remember, the exact layout of the stack frame is a convention and depends on hardware, OS, and compiler
used. We’ll look at the x86/Linux stack frame.

1



The current stack frame contains:

• The old value of %ebp

• Any saved registers

• Local variables (that don’t fit in registers)

• Arguments to the function about to be called

The caller’s (i.e. previous) stack frame contains:

• The return address (pushed by call)

• Arguments to the current function

2 Calling conventions

When a procedure invoked, the following things take place: Within the caller:

1. Any in-use caller-save registers are saved off

2. Arguments to the procedure are placed on the stack at (%esp), 4(%esp), . . .

3. call is executed, pushing the address of the next instruction on stack and transferring control to the
callee

Within the callee:

4. The old %ebp is pushed on the stack

5. %ebp set to the current value of %esp

6. Additional stack space is allocated by decreasing %esp if the program has any locals, arguments to
future calls, or temporaries

7. Any callee-save registers are saved off (if they will be used)

8. The body of the procedure is executed: arguments are accessed from the previous stack frame

9. Any callee-save registers are restored

10. The old %esp is restored from %ebp (if it was modified)

11. The old %ebp is restored by popping it from the stack

These last two steps can be combined by executing the leave instruction.

12. ret pops the return address off the stack (restoring %esp to its pre-call value) and transfers control
back to the caller

2.1 Stack alignment

GCC adheres to an x86 programming guideline and makes sure that the total stack space used by a function
is a multiple of 16 bytes (including 4 bytes for the saved %ebp and 4 bytes for the saved return address). As a
result, GCC will allocate at least 24 bytes of stack even if the procedure uses less (24 + 4 + 4 = 32 = 16× 2).
This maintains proper data alignment.

2


