
Answers:
Q1:
a. We're performing 64 – 64. The result, stored in %ecx, is = 0. Hence, the ZF flag is set to 1.
When the operands are interpreted as signed integers (64 and -64), the arithmetic operation does not 
overflow. Hence, the OF flag is set to 0.
When operands are interpreted as unsigned integers (64 and 4294967232), the arithmetic operation 
overflows. Hence, the CF flag is set to 1.
When the result is interpreted as a signed integer, the result is non-negative. Hence, the SF flag is set to 0.
 
b. This is 42 – 64. The result is non zero. Hence the ZF flag is set to 0.
When the operands are interpreted as signed integers (42 and -64), the arithmetic operation does not 
overflow. Hence the OF flag is set to 0.
When the operands are interpreted as unsigned integers (42 and 4294967232), the arithmetic operation 
does not overflow. Hence, the CF flag is set to 0.
When the result is interpreted as a signed integer, the result is negative. (We know this since the MSB of 
the result from the addl instruction is 1). Hence, the SF flag is set to 1.
 
c.
The result is nonzero, and so the ZF flag is set to 0.
When the operands are interpreted as signed integers, the arithmetic operation overflows. Hence the OF 
flag is set to 1.
When the operands are interpreted as unsigned integers, the arithmetic operation does not overflow. 
Hence, the CF flag is set to 0.
When the result is interpreted as a signed integer, it is negative. Hence the SF flag is set to 1.
 
Q2:
 

Conditional jump 
instruction

Jump condition

je ZF

jne ~ZF

js SF

jns ~SF

jg ~(SF ^ OF) & ~ZF

jge ~(SF ^ OF) 

jl SF ^ OF

jle (SF ^ OF) | ZF

ja ~CF & ~ZF



jae ~CF

jb CF

jbe CF | ZF

 
je and jne just use ZF in their conditional jumps
js and jns just use SF
jg, jge, jl, and jle use both OF and SF, since using cmp may result in an overflow, which would mean the 
SF should be interpreted differently.
jg and jle also use the ZF.
ja, jae, jb, and jbe use CF, since using cmp will result in a carry if the subtraction results in what “would 
be” a negative number.
ja and jbe also use the ZF.
 
Note that the condition for jg is the negation of the condition for jle, since > is the negation of ≤. (And 
similarly with jl and jge, ja and jbe, and jae and jb.) 
 
Q3.
The “jl .L7” causes the actual looping, which can be seen since you are going back up several instructions 
in the function.  
The “addl $1, %ecx” instruction causes the “cmpl %esi, %ecx” to eventually allow us to 
break out of the loop.  Note that the condition flags are not altered by the subsequent leal and movl 
instructions before the jl.
  
Q4.
The entire stack will be very large, containing ~50,000 stackframes for the fibonacci function.  We’ll 
see the consequences of the stack getting too large in lecture, but you may already be familiar with the 
infamous “segmentation fault.”  Hacker tip:  do not write code like this during your Google interview!
 
Q5.
This particular implementation of fibonacci is tail-recursive.  Once a particular call to fibonacci_helper is 
completed, nothing about that call has to be kept around on the stack, since it is just returning the value 
of a subsequent call to fibonacci.  If the compiler is smart, it will just reuse the same stack frame for the 
99,999th call to fibonacci_helper as it used for the first, by just replacing the original arguments that 
the function took with the updated values.  So we generally don’t have to worry about this version of 
fibonacci causing problems for large inputs.
 
Q6.
a. We can see that result must be in register %edi, since this value gets copied to %eax at the end of
the function as the return value (line 13). We can see that %esi and %ebx get loaded with the values
of x and n (lines 1 and 2), leaving %edx as the one holding variable mask (line 4.)
 
b. Register %edi (result) is initialized to −1 and %edx (mask) to 1.
 
c. The condition for continuing the loop (line 12) is that mask is nonzero.
 
d. The shift instruction on line 10 updates mask to be mask << n.  Note %cl is the lower 8 bits of %ecx.
 



e. Lines 6–8 update result to be result ˆ (x&mask).
 
f. Here is the original code:
1 int loop(int x, int n)
2 {
3     int result = -1;
4     int mask;
5     for (mask = 0x1; mask != 0; mask = mask << n) {
6         result ˆ= (x & mask);
7     }
8     return result;
9 }
Bonus answer:
What if the function doesn’t know how many arguments it actually takes; e.g. a variable-argument 
function like printf?  The compiled version of printf relies on the first argument to determine how 
arguments have been passed to it (e.g. if the first arg were “%d %d %s”, it’d expect 3 additional 
arguments).  If that format string were some unknown number of bytes away from %ebp, we’d never be 
able to figure out what are actually arguments to printf.
 
Q7:
a: Registers %edi, %esi, and %ebx are callee-saved registers.  These registers must be saved on the 
stack by the callee and restored before returning, since the calling function expects them to be the same as 
when the callee was called.
 
b: %eax, %ecx, and %edx are caller-saved registers.  This means the callee may use and overwrite these 
registers without destroying any data required by the caller.
 
c: 16(%ebp) refers to the 3rd argument passed to this function.  24(%ebp) refers to the 4th argument 
passed to this function.  Lines 4 and 5 result in the multiplication of the 3rd and 4th arguments passed to 
this function.  (We know that the first four arguments (there may be more) are all 4-bytes long, since we 
use “addl”, “subl”, etc. when dealing with them)
 
d. Subtracting values from %esp creates space between %ebp and %esp where we could store local 
variables or place the arguments to a function that we will call.
 
Q8:
a. We started with %esp = 0x800040. Line 2 decrements it by 4, thereby resulting in 0x80003C in the 
%esp register. Hence, this is the new value in %ebp.
 
b. We can see how the two leal instructions compute the arguments to pass to scanf. Since arguments 
are pushed in reverse order, we can see that x is at offset -4 relative to %ebp and y is at offset -8. The 
addresses are therefore 0x800038 and 0x800034.
 
c. Starting with the original value of 0x800040, line 2 decremented the stack pointed by 4. Line 4 
decremented it by 24, and line 5 decremented it by 4. The three pushes decremented it by 12, resulting in 
an overall change of 44. Thus, after line 10 %esp = 0x800014.
 
d.

Memory Addresses Stack Contents



0x80003C (%ebp) 0x800060

0x800038 0x53

0x800034 0x46

0x800030  

0x80002C  

0x800028  

0x800024  

0x800020  

0x80001C 0x800038

0x800018 0x800034

0x800014 (%esp) 0x300070

 
The call instruction will push “12” onto the stack before jumping to scanf, since that is the return 
address where we should start executing once scanf returns.
 
Note: byte addresses 0x800020 to 0x800033 are unused by proc. These “wasted” spaces are 
allocated to improve cache performance. We'll see how and why later this semester.
 


