
CS61: Systems Programing and Machine
Organization

Fall 2011

Section 2: Monday 19 September – Friday 23 September

Topics to be covered:
● Flags
● Jumps
● Loops
● Procedure Calls

Condition Codes

EFLAGS is a 32 bit register that contains separate bits for each of the condition flags, which are set
automatically by the CPU to represent the result of the previously executed instruction. Examples of
condition flags include the following:

CF: Carry Flag. The most recent operation generated a carry out of the most significant bit. Used to

detect overflow of unsigned operations.
ZF: Zero Flag. The most recent operation yielded zero.
SF: Sign Flag. The most recent operation yielded a negative value.
OF: Overflow Flag. The most recent operation caused a two’s-complement overflow -- either negative

or positive.

Typically these flags are set or cleared as the result of an instruction (e.g. add, sub, cmp, etc.) and
can then be used to conditionally set a single byte (set), jump to a new part of the program (jmp) or
transfer some data (mov).

Q1: For each one of the following, determine which flags are set by the add instruction and why.

[a]
movl $0x40, %eax
movl $0xffffffc0, %ebx
addl %eax, %ebx

[b]

movl $0x2a, %eax
movl $0xffffffc0, %ebx
addl %eax, %ebx

[c]
movl $0x7FFFFFF0, %eax
movl $0x2c, %ebx
addl %eax, %ebx

Jumps
There are two methods of performing jumps: direct and indirect. For direct jumps, the destination is
specified as a label (e.g. jmp .L1 or, after compiling, jmp 0x8049994) and is encoded as part of
the instruction. For indirect jumps, the jump target is read from a register or a memory location and is
preceded by a ‘*’. For example:

jmp *%eax

uses the value in register %eax as the jump target.

Certain jumps are combined with certain condition flags to create conditional jumps:

Q2: Which of the condition flags do each of the above jump instructions use in determining if it will
execute the jump?

Control Flow: Loops

Let us now see how loops are implemented using conditional jumps. The following is a simple
function to compute a Fibonacci sequence:

int fibonacci(int n) {
 int i = 0;
 int val = 0;
 int nval = 1;
 do {
 int t = val + nval;
 val = nval;
 nval = t;
 i++;
 } while (i < n);
 return val;
}

Generate the assembly code in the cs61 machine:
$ gcc -O2 -S -m32 fibonacci.c
Let's look at the code of this function, and focus on the code inside the loop.

Register Variable Initially

%ecx i 0

%ebx val 0

%edx nval 1

%esi n n

%eax t 0

fibonacci:

pushl %ebp # save old value of %ebp
xorl %ecx, %ecx # i = 0

 movl %esp, %ebp # %ebp = base of current stack frame
movl $1, %edx # nval = 1

 pushl %esi # save previous value of %esi
 movl 8(%ebp), %esi # load n into %esi
 pushl %ebx # save previous value of %ebx
 xorl %ebx, %ebx # val = 0
 jmp .L2 # jump to .L2
.L7:
 movl %eax, %edx # nval = t
.L2:
 addl $1, %ecx # i++
 cmpl %esi, %ecx # compare i to n
 leal (%edx,%ebx), %eax # t = val + nval
 movl %edx, %ebx # val = nval
 jl .L7 # Jump if i < n
 popl %ebx # restore %ebx
 movl %edx, %eax # Set nval (==val) as the ret. value
 popl %esi # restore %esi
 popl %ebp # restore %ebp
 ret # pop return address and jump to it

Note that assembly code instructions do not always appear in the same order as the corresponding
code in the C program. For example, i is incremented near the beginning of the loop in the assembly
program, but is incremented at the end of the loop in the C source program. The compiler is free to re-
arrange the order of the instructions as long as it does not change the meaning, or behavior, of the code.

Q3: Which line in the assembly actually causes the code to loop? What lines are important in making
sure that we don’t loop forever?

Now we’ll look at fibonacci defined slightly differently:
int fibonacci(int n) {

// ignoring negative n
if(n == 0 || n == 1)
 return n;
else
 return fibonacci(n-2) + fibonacci(n-1);

}

Q4: What is the stack going to look like midway through a call to, say, fibonacci(100000)?

Let’s try one more time:

int fibonacci(int n) {
 if(n < 3)
 return 1;
 else
 return fibonacci_helper(n-2,1,1);
}

int fibonacci_helper(int n, int n0, int n1) {
 if(n == 0)
 return n1;
 return fibonacci_helper(n-1, n1, n0+n1);
}

Q5 (Bonus): What’s so different about this particular implementation of fibonacci? What happens to the
stack / what does the stack look like midway through a call to fibonacci(100000)?

Q6: Consider the following assembly code:
 # x at %ebp+8, n at %ebp+12
 1 movl 8(%ebp), %esi
 2 movl 12(%ebp), %ebx
 3 movl $-1, %edi
 4 movl $1, %edx
 5 .L2:
 6 movl %edx, %eax
 7 andl %esi, %eax
 8 xorl %eax, %edi
 9 movl %ebx, %ecx
10 sall %cl, %edx
11 testl %edx, %edx
12 jne .L2
13 movl %edi, %eax

The preceding code was generated by compiling C code that had the following overall form:
1 int loop(int x, int n)
2 {
3 int result = _________;
4 int mask;
5 for (mask = __________; mask __________; mask = _________) {
6 result ^= __________;
7 }
8 return result;
9 }

Your task is to fill in the missing parts of the C code to get a program equivalent to the generated
assembly code. Recall that the result of the function is returned in register %eax. You will find it helpful
to examine the assembly code before, during, and after the loop to form a consistent mapping between the
registers and the program variables.

a. Which registers hold program values x, n, result, and mask?
b. What are the initial values of result and mask?
c. What is the test condition for mask?
d. How does mask get updated?
e. How does result get updated?
f. Fill in all the missing parts of the C code.

Bonus: Why are the arguments to loop pushed on the stack in reverse order (i.e., x ends up closer to
loop’s %ebp than n)? Why can’t we do it the other way around?

Procedure Calls
Q7: Lets say we are given the following assembly code for a function:

1 pushl %edi
2 pushl %esi
3 pushl %ebx
4 sub $0x24, %esp
5 movl 24(%ebp), %eax
6 imull 16(%ebp), %eax
7 movl 24(%ebp), %ebx
8 leal 0(, %eax, 4), %ecx
9 addl 8(%ebp), %ecx
10 movl %ebx, %edx
11 subl 12(%ebp), %edx
…...
20 popl %ebx
21 popl %esi
22 popl %edi

A: Why are %edi, %esi, and %ebx pushed onto the stack at the beginning of this function and

popped off at the end?
B: What about %eax, %edx, and %ecx? Why aren’t they put on the stack?
C: What do 24(%ebp) and 16(%ebp)refer to?
D. Why do we subtract 0x24 from %esp? What might be put in that area?

Q8: Lets say we are given the following assembly code for a function:
int proc(void) {
 int x, y;
 scanf(“%x %x”, &y, &x);
 return x – y;
}

and the corresponding assembly code generated is:

1 proc:
2 pushl %ebp
3 movl %esp, %ebp
4 subl $24, $esp
5 addl $-4, %esp
6 leal -4(%ebp), %eax
7 pushl %eax
8 leal -8(%ebp), %eax
9 pushl %eax
10 pushl $.LC0 # Pointer to string “%x %x”
11 call scanf
12 movl -8(%ebp), %eax
13 movl -4(%ebp), %edx
14 subl %eax, %edx
15 movl %edx, %eax
16 movl %ebp, %esp
17 popl %ebp
18 ret

Lets assume procedure proc starts executing with the following register values:

%esp = 0x800040
%ebp = 0x800060

Suppose proc calls scanf (line 11) and scanf reads values 0x46 and 0x53 from the standard input. Assume
the string “%x %x” is stored at memory location 0x300070 (i.e., the label .LC0 is translated to the
address 0x300070).

a. What value does %ebp get on line 3?
b. At what addresses are local variables x and y stored?
c. What is the value of %esp after line 10?
d. What does the stack frame look like before line 11? If the line numbers all the way on the left were

the addresses of the instructions, what value would the call instruction push onto the stack?

