
CS61, Fall 2011
Section 1: Binary representations and basic assembly

Today’s topics

• Binary basics

• Signed numbers

• Addressing and byte ordering

• Basic assembly

• Operand specifiers

While we’re at it, we’ll also get familiar with the course infrastructure and gdb.

1 Reminders

Assignment 1 is due Tuesday, Sept. 13, 11:59pm.

Assignment 2 is due Thursday, Sept. 22, 11:59pm.

Please try and attend the section you were assigned to. However, on a trial basis, we are allowing students
to attend other sections. There will be short quizzes on recent material at the beginning of some sections.
These quizzes will count towards your grade and if you miss a quiz, you will receive a zero for that quiz.
Your lowest two quiz scores will be dropped.

2 Course infrastructure

If you haven’t tried the course infrastructure out yet, please do so soon. You’ll need it to complete the labs
during the course (including Homework 2, out now). Instructions are on the wiki.
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3 Binary basics

Some useful terminology:
MSB most significant bit—bit position with highest bit value
LSB least significant bit—bit position with lowest bit value
Nibble a group of four bits

Q1: What’s the maximum value of a nibble? 15

Converting from binary to decimal

1012 = (22 × 1) + (21 × 0) + (20 × 1) = 510

Converting from binary to hexadecimal

1. Divide digits into nibbles

2. Convert each nibble into the corresponding hexadecimal digit

010011111011→ 0100 1111 1011→ 4FB16 → 0x4FB

To reverse, convert each hexadecimal digit into the corresponding nibble.

Q2: Fill in the missing values:

Binary Hexadecimal Decimal
1011012 0x2D 45

Bit shifting Bit shifting is a simple way to multiple or divide by 2n.

<< n, or left shift, is equivalent to multiplication by 2n

Compute 12× 4
1100 << 2 = 110000 = 3210 + 1610 = 48

>> n, or the arithmetic right shift, is equivalent to division by 2n

Compute 12/4
1100 >> 2 = 11 = 210 + 110 = 3

4 Signed numbers

x86 uses the two’s complement representation of negative numbers. From lecture and the book, you’ll
remember there are three steps to representing a negative number in two’s complement:
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1. Write down the number in binary.

2. Invert the bits (this gives us the ones’ complement).

3. Add 1.

For example, let’s write −42 in binary. First, convert to binary (in this case assume we’re using one byte):
00101010. Then, invert the bits: 11010101. Finally, add 1: 11010110.

Note that the MSB is ‘1’, so we should interpret this as a negative number. It’s a bit misleading to call it the
‘sign’ bit because it also has weight, unlike in a sign-and-magnitude representation.

As for unsigned representations, we can write a formula for the decimal interpretation of a binary number
in two’s complement:

−bn−1 × 2n−1 +
n−2∑
i=0

bi × 2i.

We can use this formula to interpret the number we computed above, 11010110:

−1× 128 + 1× 64 + 1× 16 + 1× 4 + 1× 2 = −42.

Remember: information is bits + context. The ‘value’ of a binary representation really depends on how we
interpret it. For example, if we interpret the binary representation above as an unsigned integer, we get 214
(instead of -42).

You can try it in C:

printf("%d (signed)", (char)0xD6);
printf("%d (unsigned)", 0xD6);

Q3: Fill in the missing values:

Binary Unsigned byte Signed byte
10000000 128 -128
11111111 255 -1

1 1 1
0 0 0

Q4: During lecture and assignment 1, we discussed a few other representations (ones’ complement, base
negative two, . . . ). Why is the two’s complement so commonly used?

Because arithmetic operations are the same for both positive and negative numbers and no value is ‘wasted’
on a second representation of 0.

Q5: Why does the compiler often generate code where memory locations are accessed using large offsets?
For example, in mov fffffffc(%ecx), %eax. What is this equivalent to?

Treated as a signed number, the offset is −4.
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5 GDB interlude

Some gdb commands you should know:

break set a breakpoint
disas disassemble a function
si step forward one (or more) assembly instructions at a time
print print a register value
x print memory value(s)

6 Addressing and byte ordering

In virtually all machines, a multi-byte object is stored as a contiguous sequence of bytes, with the address
of the object given by the smallest address of the bytes used.

When we write a hexadecimal value, like 0x1a2b3c4d, we write it with the most significant byte (0x1a)
on the left and the least significant byte (0x4d) on the right. That’s just because humans have a convention
of writing numbers in this way. But when such a value is stored in memory, the order in which the bytes
are stored depends on the endianness (end-ian-ness) of the CPU architecture. The x86 is a “little-endian”
machine, which means it stores the low-order byte of a word in the LOWEST MEMORY ADDRESS. So,
the value 0x1a2b3c4d would be stored in memory as:

memory address M M+1 M+2 M+3
content 0x4d 0x3c 0x2b 0x1a

A “big-endian” architecture (like the Sun SPARC processor) stores the highest-order byte of a word in
memory first.

Why does this matter? Because when you look at a memory dump, say using GDB, you will see the contents
of memory as they are stored. If you intend to interpret 4 bytes stored in memory as a word, you need to
remember to ’swap the bytes’ to make up the actual hex value of the word. So a memory dump of 0xab
0x40 0x1b 0x67 would be interpreted as the value 0x671b40ab.

Q6: What happens when computers with different endianness try to communicate? What is a solution to
this problem?

Most RFCs for network protocols define a standard network order. For the Internet Protocol, this is
big-endian. The Berkeley sockets API (the standard C networking API) provides a family of functions
(htonl, htons, ntohl, ntohs) to manage the required conversions in a portable way.

7 Operand specifiers

Assembly instructions can take three different types of operands: a constant, or immediate, value, a register
value, or a memory value.
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Type Form Operand value Example
Immediate $Imm Imm $42

Register Ea R[Ea] %eax

Memory Imm(Eb, Ei, s) M [Imm+R[Eb] +R[Ei]× s $42(%esp,%edx, 4)

This last operand form is one of many ways of accessing memory, though it is the most general. The full
list of memory operand specifiers is given in Figure 3.3 of the text (pp169). This is the most useful form to
remember though, because we can derive all of the others from it. Basically, the other forms leave of some
of the arguments. One way to think of those forms is as supplying “default” arguments to this specifier,
where the defaults are 0 for Imm, R[Eb], and R[Ei], and 1 for s.

Things to note:

1. b for “base”, i for “index”, s for “scale”

2. scale has to be one of 1, 2, 4, or 8

Q7: Assume the following values are stored at the indicated memory addresses and registers.

Address Value Register Value
0x100 0xFF %eax 0x100

0x104 0xAB %ecx 0x1

0x108 0x13 %edx 0x3

0x10C 0x11

Fill in the missing value for each operand:

Operand Value
%eax 0x100

0x104 0xAB

$0x108 0x108

(%eax) 0xFF

4(%eax) 0xAB

9(%eax,%edx) 0x11

260(%ecx,%edx) 0x13

0xFC(,%ecx,4) 0xFF

(%eax,%edx,4) 0x11

Q8: A function with prototype int decode(int x, int y, int z); is compiled into assembly.
The body of the code is as follows:

1 # x at %ebp+8, y at %ebp+12, z at %ebp+16
2 movl 12(%ebp), %edx
3 subl 16(%ebp), %edx
4 movl %edx, %eax
5 sall $31, %eax
6 sarl $31, %eax
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7 imull 8(%ebp), %edx
8 xorl %edx, %eax

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16 relative to the address in
register %ebp. The code stores the return value in register %eax. Write the C code for decode that will
have an effect equivalent to our assembly code.

This week in lecture: why are the variables in memory at offsets from %ebp? Why does the code return the
value in %eax? and other calling conventions. . .

Breaking things down by line:

2 %edx = y
3 %edx = %edx− z
4 %eax = y − z
5 %eax = %eax << 31
6 %eax = %eax >> 31
7 %edx = %edx× x

8 %eax = %eax%edx

Remember: operands are usually ordered Source, Destination, and arithmetic operations are Destination =
Destination ‘op’ Source.

int decode(int x, int y, int z)
{

int t1 = y - z;
int t2 = x * t1;
int t3 = (t1 << 31) >> 31;
int t4 = t3 ˆ t2;

return t4;
}

8 Getting a really highscore.

Q9: How do you get the highest score on the highscore binary?

Overflow! It turns out that big negative number we can get from score4 is quite handy.

10 + 10 − 65556 − 2147418113 = −2147483649, but the smallest negative number we can represent is
−2147483648, so we wrap around to the biggest positive number, 2147483647.
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