
CS61 Section Notes

Section 10 (Fall 2011)
 
Synchronization Recap
Remember from last week that when multiple threads are attempting to access a shared 
variable at the same time, bad things can happen. To keep our concurrent programs running 
correctly, we must synchronize the execution of the threads. So far, we’ve seen one method 
of synchronization: mutual exclusion. Sometimes we have a block of code (called a critical 
section) that must be run atomically in order for the behavior of the program to be correct. 
We must ensure that while one thread is running the code within the critical section, no other 
thread may enter the critical section. We can do this using the mutex primitives provided by the 
pthreads library. A mutex of type pthread_mutex_t is defined as a global variable. When a 
thread wishes to enter a critical section, it calls pthread_mutex_lock(&mutex) and passes 
a pointer to the mutex to acquire the lock. When the thread is done, it releases the lock using 
pthread_mutex_unlock(&mutex). 
 
If a thread is currently holding a lock, all other threads must wait to acquire it until the thread 
holding the lock has released it. Thus, mutual exclusion can dramatically slow down a program. 
This is generally unavoidable, but we can get the best performance by keeping critical sections 
as small as possible, and by having multiple mutexes if there are multiple shared variables.
 
Enough talking. While synchronization is fairly easy to understand as an abstract concept, 
reasoning through real examples can be very, very hard. The purpose of today’s section is 
to work through a (somewhat) realistic example of a concurrent program to give you practice 
reasoning about concurrent execution and synchronization, which you will have to do on a 
larger scale in Lab 5.
 
Synchronization Exercise Part 1
After the contested 2009 election, the Harvard Undergraduate Council has decided to switch 
over to a more secure, terminal-based voting system for this week’s presidential election. A 
number of threads, defined with the macro THREADS, accept votes from the terminal (we will 
simulate this by reading them in from a file). Each vote is one character, a single digit from 0 to 
CANDIDATES-1 (we must limit ourselves to 10 or fewer candidates). The threads increment the 
totals for the respective candidates, and the results are tallied after all votes are entered.
 
There’s just one problem: the code isn’t synchronized. Your job is to add mutexes to the code 
so that the vote totals are correct at the end of execution.
 
Start by getting the code. Login to your CS61 VM as usual. Then, run the following command to 



copy the directory containing the code to your home directory:
 
cp /home/shared/cs61/section10 -r ~
 
The code for the voting program is in cs61-section/vote.c. You can compile the code by running 
make, and then run it using make run. Note that the totals will come out different each time you 
run it, because the code isn’t properly synchronized.
 
At first, you should ignore the code in vcthread, and any code within an if(secondchoice)
block. These will come in later. You should add synchronization code (mostly calls to 
pthread_mutex_lock and pthread_mutex_unlock) in tallyvote, where marked in the 
code. You should not modify our code, you should only add your own. 
 
Your first step should be to think about what locks you want to use. Define them as global 
variables and then initialize them in main() using pthread_mutex_init(&mutex, NULL).
 
Notes

● The vote is passed into tallyvote in the integer variable vote1. Don’t worry about 
vote2 yet.

● We’ve  split up the vote-incrementing code into two lines: one that loads the total into 
a temporary local variable, and one that stores the new value, separated by a call to 
desynch(), a function that causes the thread to sleep for a random length of time 
or not at all. This is to increase the amount of indeterminacy in the execution of your 
program so it will be easier for you to test your synchronization. Do not remove these 
calls.

● You may want to start with simple synchronization code, but once you have this working, 
you should consider whether you can make your code faster by using a more complex 
locking mechanism. You can time the execution of your program by compiling it with 
make timing and then using make timerun. Note that this will disable the behavior 
of desynch() and therefore make it harder to test correctness, so only do this once 
you’re convinced your solution is correct. This will also use a much larger file containing 
approximately 10,000,000 votes.

● We’ve provided a script to automatically generate vote trace files in addition to the one 
that was packaged with the code, to use this script, run  
py gentrace.py <candidates> <number of votes> <output file> 
You can input this to vote by running ./vote [-sc] < <output file>



Deadlock
Deadlock is a common problem when dealing with multiple mutexes. Suppose thread A runs the 
following code:
pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);
 
At the same time, thread B runs the following code:
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
 
Suppose thread A runs its first line and acquires mutex 1, then the system context switches 
to thread B, which acquires mutex 2. Since thread A already holds mutex 1, the second line 
in thread B will cause it to block and return to thread A, which will attempt to acquire mutex 2. 
Since this mutex is already held by thread B, thread A will also block. Here, we can see that 
neither thread will ever make any progress, and the program will grind to a halt.
 
Deadlock can only occur when all of the following conditions hold:
- Mutual Exclusion: A resource (e.g. lock) can only be used by one thread (or more generally, 
a bounded number of threads) at a time.
- Hold-and-Wait: A thread that already holds some resources can request more.
- No Preemption: A resource can’t forcibly be removed from the thread that holds it.
- Circular Wait: Two or more threads form a circular chain in which each thread is waiting for a 
resource that another thread holds.
 
To prevent deadlock, we must prevent at least one of these conditions from arising.
1. Propose some mechanisms to prevent deadlock.
 
 
 
Synchronization Exercise Part 2
Suppose we extend the functionality of the voting program so that voters may enter a first 
choice vote, followed by a second choice vote. The first choice then receives 2 votes and the 
second choice (passed to tallyvote as vote2) receives 1 vote. 
 
Add code to tallyvote to synchronize the second-choice voting code. As before, try to make 
your code run as quickly as possible while still being correct. This time, you must be on the 
lookout for a potential deadlock. You can test your code by compiling using make and then 
running using make second.
 
You may also notice that, once we start reading a second vote from the terminal, the vote-
reading code in votethread may have a concurrency bug (Why?) Add some synchronization 
code to fix this as well.
Semaphores
A semaphore is a synchronization primitive with a built-in integer counter. The function 



sem_wait decrements the counter; the function sem_post increments the counter (these 
functions are sometimes called, respectively, wait and signal or P and V). If a thread calls 
sem_wait on a semaphore whose counter is zero, then that thread goes to sleep “on the 
semaphore” and does not decrement the counter until it is woken up. If a thread calls sem_post 
on a semaphore whose counter is zero, then that thread also wakes up exactly one other 
sleeping thread.
 
A semaphore generally used when the counter is associated with some countable resources, 
and threads want to wait until those resources becomes available.
 
2. To implement a semaphore, what parts do you need?
 
 
 
 
Condition Variables
A condition variable is a synchronization primitive that has no built-in counter whatsoever; in 
contrast, a lock has a built-in binary counter (locked/unlocked), and a semaphore has a built-
in integer counter. For this reason, condition variables are sometimes thought of as the “most 
flexible” synchronization primitive.
 
The function pthread_cond_wait takes both a CV and a locked lock, and first releases 
the lock, and puts the calling thread to sleep “on the CV”. When the thread wakes, it will 
immediately try to re-acquire the lock. The function pthread_cond_signal wakes one thread 
sleeping on the CV, and the function pthread_cond_broadcast wakes all the threads.
 
A CV is generally used when there is some associated condition or event, and threads want 
to wait until that condition is true, or the event occurs. Note that the CV does not embody its 
own condition; a CV itself is never “true” or “false”! A lock is kind of like a CV that waits for the 
condition “unlocked”, and a semaphore is kind of like a CV that waits for the condition “count > 
0”.
 
3. Why does pthread_cond_wait take a (locked) lock? Why re-acquire the lock on wakeup?

 



Synchronization Exercise Part 3
This part involves some fairly difficult reasoning, and is for those who would like an extra 
challenge. Suppose we want to be updated on the progress of the election every 1,000 votes. 
We do this by spawning an extra thread, which runs vcthread and monitors the total number 
of votes. When this total reaches nextprint, the thread calls countvotes and prints the 
current totals. It then updates nextprint to contain the total number of votes at which it will 
next do a count. You can run the code with this option using make count. Note that, even 
though vcthread checks that the total is equal to nextprint, the total number of votes 
printed is not always a multiple of 1,000. Why does this happen?
 
Add synchronization code to make sure the vote totals print every time the number of votes is 
a multiple of 1,000, and that the correct totals are printed each time. How fast can you make 
your solution while keeping it correct? To time your solution, run make timing and then make 
timecount.
 
Hints

● As before, you do not need to, and should not, modify any of the original code to build an 
efficient implementation.

● Our solution uses one CV and one semaphore, though you may find another solution.
 
 
 
 
Monitors
A monitor is, essentially, a formal style for using locks and CVs. A monitor is a set of functions, 
CVs, and shared data. The shared data can only be accessed by the monitor’s functions. Only 
one thread is permitted to be running a function inside the monitor at any time; it’s like there’s 
one “big lock” around all the functions in the monitor. This big lock protects the CVs and their 
associated conditions (i.e., the monitor’s shared data).
 
Most monitor implementations use Mesa semantics: this means that when a CV inside the 
monitor is signaled, the woken thread does not immediately run. Thus, the woken thread needs 
to check if the condition it was waiting for is still true when it actually gets to run! This is basically 
the same way that CVs work when used outside of monitors.
 
Some monitors use Hoare semantics: this means that a thread that signals a CV inside the 
monitor immediately relinquishes control of the monitor to the newly-woken thread. Thus, the 
woken thread knows the condition is still true when it runs.
 
A monitor is generally used whenever you would use one or more CVs with one lock and some 
self-contained variables that represent the conditions you want to wait on. This is a common 
scenario for CVs; the formalism of the monitor helps you get the implementation right.
 



Fairness, Starvation, and Speed
All synchronization primitives have to make scheduling decisions; in particular, who gets to run 
next if multiple threads are waiting? Scheduling should be fair for some reasonable definition 
of “fair”; usually this means that the thread chosen to run is random, or that the primitive follows 
an equal-opportunity policy such as first-in, first-out. A primitive should never be so unfair as to 
realistically permit starvation, the scenario where a waiting thread is never woken. However, 
sometimes a “fair” schedule is not optimal for speed!
 
8. A reader-writer lock is a lock that permits multiple threads to lock it in “read” mode or one 
thread to lock it in “write” mode. In Lab 5, we’ve asked you to implement “writer-priority” RW 
locks in which, if a writer is waiting for a reader to release the lock, it is not possible for other 
readers to acquire the lock. Why did we ask you to implement RW locks this way?
 
 
 
 
9. There are actually several acceptable ways you might implement writer-priority RW locks. 
Suppose your implementation always prioritizes writers over readers; a reader cannot enter 
the lock if any writer is waiting. Is there a problem with this implementation? What are its 
advantages? (Note that this implementation is acceptable for Lab 5, so don’t panic if you 
did it this way!)
 


