Scribe Notes (Sept 25, 2014) - Serguei Balanovich, Nhu Nguyen, Emily Houlihan, Alex Wang

Announcements

Pset 2 has been released, there IS an intermediate check-in

encourage people to make an associative cache

Deadlines for all other Problem Sets Posted

Process isolation - the great idea of computer systems
e start by coding a program that messes up the machine

o

o

o

o

sets the 0x10000000 byte to O

Even though we know this won'’t execute, let’s pretend we are the computer —
when we encounter something like this (accessing an address the program is not
allowed to access) — what should we do?

this is a memory address we’re not allowed to access, we’re trying to get
something that doesn’t exist

The processor is being asked to access memory that doesn’t exist, so what
should the processor do?

this is where the idea of halt and catch fire instruction happens - if the next line
that you do will go terribly wrong, you have to stop

expectation: system will shut down

reality: segmentation fault

e This seems really odd

o

o

o

It’s weird that this program only killed itself and did not affect anything else on the
machine.

everything that’s running never seems to conflict with each other

our computers don’t need to restart because of modularity

e Now we’re going to run a very bare bones operating system

o

o

Cd into the ../0s00/ directory
In there is a very small operating system in there (the smallest OS you’ve ever
seen)
hardware.c — it’s full of stuff we really don’t understand
kernel.c - it has grabbed access of his keyboard, and he can’t do anything
m and since the os was designed to do anything, he cannot escape
m what if | add the same 0x1000000 = O to the os we made
m then the computer starts rebooting constantly, every time the machine
does something wrong, it has to entirely restart
m NASAL DEMONS ARE DANGEROUS

e Why then does this not happen in C?

o

So why is it that this doesn’t happen to us on a more regular basis? How do we
get a seg fault and the rest of the computer is still functioning?

so now that we’ve seen the difference between software crashes and hardware
crashes is very different (software is more modular)

o

one thing doesn’t matter between another

e Process

o

o

Program in execution. Starting emacs in lecture over and over ends up with one
program (emacs) but many processes
OS (Operating System)’s implementation of an abstract machine.
m Operating System - is the program with full privilege over machine
operation.
e Kernel — the most privileged component
m The goal of the OS is to make the computer as a whole more robust by
enforcing Process Isolation
m enforces and mediates the sharing of processors and resources
m hardware detects illegal operation, informs OS, OS Kkills the process
m kernel: most privileged part of the OS
e saying "Windows" refers to the Windows kernel and the ancillary
function
m the reboot is called a triple fault
e created by design of Intel engineers
m timer interrupt: every increment of time of the system clock, gives control
back to kernel
e otherwise infinite loop would beat process isolation
e tradeoff between programs stalling and handling interrupts in
determining time increment
e controlled by kernel

e Process Isolation

o

The property that each process runs without affecting any other processes,
except through explicit sharing
Every process has its own memory — can process A affect process B? No. Can
A access B’s memory? No.
Each process pretends as if it owns the entire machine as a result of the Process
Isolation abstraction
In fact, there is just one processor, but a bunch of processes are running at once,
all thinking that they have full control of the disk, memory, etc.
The sharing comes from the Operating System.
Processes act as if they have access to the entire machine (you just don’t)
It means you don’t have to worry about being interrupted by another program (yay
working in a vacuum)
the sharing is being mediated and enforced by the operating system

m this is why 0s’s are soooo important

m bugs in os’s then are VERY bad!! because things will shut down
process isolation is technically sort of inefficient (but it stops us from the
computer stopping anytime there is an error)

e Let’s go back to our original program, but replace the false memory access with an
infinite loop. This program would not do anything illegal, so why would the Operating
System ever get control of this?

this is technically a safe action

so when can the os regain control of this program

in a bad os this would freeze you machine

but other programs still can use the machine while this is happening

This is because of time slicing, which kicks the kernel, and gives the kernel the

control of the process
m how to determine the length of the time slice?

m Yyou can vary it, but usually it's .001 seconds so we can give other
programs abilities

o the kernel and the os are super similar!!! the kernel is the single program that
has the most privilege

o during process shifting we hide the fact that a process has been interrupted from
the process

O O O O

Process

L

User kernel boundary

u

Kernel

e system calls are the API for the kernel
o system call interface process requests from processes to kernels
o strace watches

Demonstration of time slicing

e using the top command to let you see processes

e in one you have a loop that does nothing and uses 99% of cpu
o called polling - repeatedly uses the cpu through many time slices
o polling generally not good, but notices changes quicker

e the other one calls sleep() which talks to the OS - which doesn’t use any of the cpu
o blocking - when a program asks kernel to wake up when something happens, but

pass by otherwise

What we can see is when we run an infinite loop to do nothing forever, the program takes up
~100% of the CPU (83.7% in this case because Chrome is rendering bubble animations in the
background)

Now change the infinite loop to s1eep (1000) on each while iteration
Now a.out is not running or using any of the CPU
The difference between the versions is:
Polling: When a program repeatedly uses the CPU
Usually not good but tends to notice changes faster
Blocking: When a program asks kernel to wake it up when something happens

Leaves more resources available for other programs

Caching

Memory refresh
e strace the programs we wrote last time
o run syncbyte - gets a look at the system calls we got from that
o writing a byte at a time using system calls (we don’t have to wait during the write
to the disc)
o and then run with stdio, which is super fast
e How is Stdio fast?
WERE USING CACHES
use diff to find the difference between the two programs we wrote, and the only diff was o-sync

Let’s run syncbyte v1, which writes one byte at a time

Run syncbyte v3, which does the same thing but we don’t care when the data gets written to
disk (better performance)

Run syncbyte v5, which writes one byte at a time using stdio.

If we look at the .out for v1 and v3, we’ll see an output of bytes that are nearly identical to one
another. The difference is that in v1, an o_sync flag is present (don’t proceed until you write to
disk). V3 batches the disk access.

But looking at the .out from v5, it’s very different. We have multiple writes. One of them shows us
how fast the program is executing and the other shows the writes happening to the disk. This
version calls fwrite instead of write.

There are really different results between stdio and syncbyte

writes to three are going to disc, the writes to 2 are the ones we see on the screen
w0 is calling directly write to disc
w03 writes using batching, doesn’t use O_SYNC tag so it doesn’t need to wait to hear
back from the disk
e w05 writes using fwrite, or stdio calls (which makes efficient system calls)
things you see in the calls
write (2, <arge>, <arg>) and write(3, <arg>, <arg>)
e file descriptors
0 = standard input
1 = stdout
2 = stderr
3 = next file we write
all of these values have type integer rather than pointers
because the kernel rather deals with integers than pointers, if it gets ints rather
than pointers, it will be less likely to create a security hole
e this is one of the things you have to think about when creating a file call structure

o O O O O

If the kernel mistreats a file, it can cause a security hole. These integers are easy to work with
which makes it easy for a kernel to validate its interface.

When the processor says “write” in w01, it waits for the disk to respond before moving on (The
disk is like a long trail and the write snail has to make it to the right spot before it can “write” and
proceed)

In w03, there’s a cache in memory that’s used to collect writes and allows us to write and come
back over and over (with no delay) until we run out of space or the OS feels necessary, the
entire cache is written to disk in one go.

The process is not waiting for disk, it's waiting for availability of memory for the cache. So what’s
a cache?

e (Cache — Local, fast storage which is used to speed up access to slow storage. The
memory that the kernel is using to store the cache is a lot faster to access than the disk.

Disk has a large per call cost (every call takes a long time) but a small per unit cost (more units
to write does not increase writing time)

Eventually the cache might be filled up, so then you empty it, and then can start the process
back up again
this is the same idea as doing byte writes as blockwrites

In w05 the user level code is written to write one byte at a time, memor is actually being written
4096 bytes at a time

This is a really deep fundamental type of process for systems
e We are using memory as a local copy before writing all that data to disc
e There are many layers of different caches

This is caching for writing. Can we use caching for reading?

e In this case you bring a huge chunk of info out of the disc and then give it to the process
when we need it

Use strace to see the different between stdio read and a single byte read

It's asking for data before we need it, we call this pre-fetching

How does it know what to prefetch?

If we have an enormous file, and we start reading it, we will try to fetch the file
sequentially, if you start jumping around, it stops prefetching

If we access the file in reverse order, it is >10x slower than reading the file forward.

