
Scribe Notes – 11/13/14 Lecture 20

Covered in This Lecture:

 Wait
 Race conditions
 Blocking & polling
 Signals
 Pipes

Lets get to it!

 Wait (e.g. waitpid)

o Parent process waits for a change in the state of the child process, for example:
 Termination of a child process
 A signal to stop a child process
 Signals to resume a child process

o Note: only a parent can wait for a child; a child cannot wait for its parent

 What if we implemented a wait function using pipes instead?...
o Read end of the pipe can ‘wait’ for one of these to occur:

 Child dies and the write-end of its pipe closes  parent starts reading out

contents of pipe
 Child writes a byte to the pipe  parent assumes that the child process is

complete and starts reading
 Child closes the pipe  parent assumes that the child process is complete

 waitpid(pid, &status, 0)
o Blocks until pid change status, sets status, and returns 0
o Parent processes must wait for one of these conditions to change before resuming

 Implementing a timeout
o Timeout: can tell a process to wait for a specific amount of time, or until the child dies
o Example pseudocode for a 0.75 second timeout:

while (start_time + 0.75s >= timestamp) {
waitpid(p1, &status, WNOHANG) ;

}
o If child has exited, this will return 1
o If there is a timeout, it will return 0

 Blocking system call

o Waits for a single event, will not return until state change
o Advantage – good CPU utilization (CPU can do other work in the meantime)
o Examples – usleep(miliseconds), select(args)

 Polling system call
o Returns immediately, and returns a different thing once state changes
o Advantage – greater control over when to stop waiting (user can specify wakeup

conditions)
o Disadvantage – poor CPU utilization
o Example: WNOHANG

http://linux.die.net/man/2/waitpid
http://linux.die.net/man/2/select

Scribe Notes – 11/13/14 Lecture 20

 Signals

o Interrupts
o usleep() will end early if it receives a signal from the child
o Ex: SIGCHILD can allow us to send a signal when child dies
o Signal handlers

 Should be prepared to handle immediately and at any time
 Consequence  should not make any long system calls (e.g. a printf)

o Example signal handler: handle_signal(SIGCHILD, handler);

 Pipes
o Are inaccessible except to the parent and child processes
o Can create memory leaks if you never close the read end of the pipe

 Example: yes “I love you” | head -n 4

o Prints the first four lines of “I love you”
o After the first 4 instances, the read end of the pipe closes and then the process is killed
o How to make this happen (pseudocode version)

 pipe sh

 creates pipe and gives read and write ends to shell
 fork sh

 Now echo is connected to the same pipe on both the read and write ends
(but via higher number page descriptors, not standard in and out)

 dup2(4, 1) echo

 4 is original place in array that lead to the write end

 1 is standard output, where we want to move it
 close(3) close(1) echo

 Pipe hygiene!
 close(4) sh

 Pipe hygiene!
 execvp(“echo”)
 fork sh

 Creates child process wc
 dup2

 Sets standard input of wc to be from the pipe
 close(3)

 Pipe hygiene!

 Outtakes & extras
o Useful function: getppid

 Allows child process to find its parent’s id (getpid for running process id)
o Protip: Draw pictures to help envision a shell’s initial and final state
o The world’s shortest fork bomb (is delicious evil)

 : () { : | : & } ; :
 Halts system if run as root,
 Try it for yourself!... or don’t…

http://linux.die.net/man/2/getppid
http://linux.die.net/man/2/getpid
https://en.wikipedia.org/wiki/Fork_bomb

