
lecture 20: 11/13/14
inter-process communication, pipes

major concepts
● wait
● race conditions
● blocking and polling

wait
● “the most fundamental inter-process communication mechanism that there is”
● “allows one process, the parent process, to discover that its child has died” :(

semantics of wait
● man wait for details

○ protip: avoid naming your functions wait, wait3, and wait4 like mac does
● actual protip: use waitpid rather than wait. why?

○ options allow exploration of race conditions, blocking, and polling
○ allows observation of state change info (death, signal interrupts, etc.)
○ zomg zombies

● P is parent, P’ is child
● P knows P’ pid through fork return value
● P’ knows P pid through either:

○ making a copy of getpid before forking
○ calling getppid (man getppid for details)

process hierarchy
● permission requirements
● design restriction: “only a parent can wait for a child process”
● when do we want to wait for a child to complete?

○ shell waits for process to finish
○ program parallelizes task across cores and combines completed outputs
○ main process relies on helper processes

how to implement wait… without wait? wait what?
● proclaim the power of pipes!
● key idea: parent (shell) blocks (stops running) until child (process) completes

when will read(3, buf, 1) return?

● if child writes byte into pipe
● if child closes write end of pipe (child is only process that has it open)
● -1 if call interrupted

from this, a proposal:

● if child dies, write end is closed. specifically:
○ fd table is destroyed
○ write end of pipe dereferenced
○ write pipe closed

● then read(3, buf, 1) will return 0 (EOF)
● so child dies → read returns. does read returns → child dies?

NO! LOGICAL FALLACY! counterexamples:

● child can close pipe (which also causes read to return) without dying
● child can write byte (which also causes read to return) without dying

proposal is “sufficient” but not “consistent”

actual protip 2: when confused with pipe processes, draw pictures!

pipe process picture example: echo foo | wc -l

yes command example
● what it does: print out a string to standard output repeatedly until killed
● e.g., yes “I love you” (for those lonely moments):

○ I love you
○ I love you
○ I love you
○ I love you
○ I love you

○ I love you
○ …
○ ^C
○ </3

● try: yes “I love you” | head -n 4 (head -n K prints first K lines of output)
○ I love you
○ I love you
○ I love you
○ I love you

● now try: strace -o strace.txt yes “I love you” | head -n 4
○ what do you see?

○ we attempted to write to a closed read end pipe

■ EPIPE → error message: no one would hear the love
■ SIGPIPE → killing signal
■ cs is depressing sometimes

○ signals: software model of hardware interrupts
● conclusion: if pipe kept read-end open...

○ yes would stick around forever
○ (it might eventually block, but we’d still have a memory leak)
○ actual protip 3: have good pipe hygiene! close your pipe ends when done

pipe process picture example: echo foo | wc -l revisited
how do we get from initial to final state?

problems with using pipe for wait
● even if process dies, pipe can remain alive
● process can write to pipe, fooling parent into thinking process had exited
● (recall logical fallacy above)

more robust solution: waitpid
● example usage: waitpid(pid, &status, 0)
● blocks until process with id “pid” changes status
● sets status, returns 0 (or child pid)

coding time: waitdemo.c
● read summary for details
● new idea: implement timeout so that we wait for min(0.75 s, time for child to die)
● man waitpid and examining options:

○ WNOHANG - return immediately if no child has exited
○ with WNOHANG set, waitpid will return 0 until child state has changed

● set status to initial value (results in abnormal exiting instead of nasal demons)
● waitdemo takes out CPU (claims to be 100% utilized). why?

○ doing work in silly loop
○ WNOHANG is polling, not blocking

“blocking vs polling: a great systems conundrum”

 blocking polling

when does it return? not until state changes immediately

why is it useful/bad? ● allows CPU to do
other work (e.g., read)

● better utilization*

● gives more control
about when we wake
up (build conditionals)

● terrible utilization*

*utilization: doing “useful” work (but who decides utility? stay tuned for future lecture!)

how can we use blocking instead of polling?
● idea 1

○ usleep(750000) at end of while loop (usleep is blocking)
○ problem: still waits 0.75 s, regardless of when child died
○ usleep blocks for amount of time passed in!
○ idea 1.5

■ usleep for small amount of time
■ okay, but let’s try to use just one blocking call

● idea 2
○ use signals (software interrupts)

■ man usleep: ERRORS has EINTR
■ man waitpid: ERRORS has EINTR
■ EINTR can return value for every system call that can block
■ we can use this to wake our sleeping

○ man 7 signal
■ SIGALRM: timer signal
■ SIGCHLD: signal if child stopped/terminated

● usually signal ignored (assumes we don’t like interruptions)
● this time, we can explicitly make handler for signal

warning: do not put something like fprintf(stderr, “I love you”) in your handler!

● signals can be delivered anytime, even in middle of printing
● keep as simple as possible
● only use for waking up system

protip 2: run the world’s shortest fork bomb

● :(){ :|:& };:
● protip 2.5: run this as root

now that we’ve created a handler, use it to handle signal:

result: appears to work properly
● child sleeping for 0.5 s → exit after 0.5 s
● child sleeping for 500000 s → exit after 0.75 s
● strace reveals that very few system calls were made
● however...

race conditions

race condition bug in this example! how to induce:
● get rid of sleep and fprintf in child
● replace fork with nfork (nondeterministically run either parent or child first)
● note: luck might not be on your side, so also add small sleep (5 us) to parent

○ note: this is totally valid for system to do, too

what happens in race condition?
● child died right away, but parent was too busy sleeping (in 5 us) to notice :(
● parent then waited 0.75 s even after child died right away - bad!

solution attempts
● move handle_signal to before nfork, so every usleep should be woken up

○ problem still exists! why?
○ child exited before we even started sleeping

● almost fix - use global variable
○ first change handler to change global variable when signal received

○ then only sleep if global variable not changed (no signal received)

○ race condition bug with very tiny probability, but still exists
○ possible to receive signal between conditional jump and usleep!

● solve once and for all with select
○ “fundamental ‘wait for multiple things’ system call”
○ blocks until something happens, generally one of following:

■ data appears to be read
■ data appears to be written
■ data appears to be exceptfds (← no one actually knows what this is)
■ data appears to be timed out

○ here, we can wait for byte to be readable or timeout to occur

○ add writing to pipe in signal handler

○ then set up timeout, readfds, and let select solve race conditions!

○ proclaim the power of pipes!

