Scribe notes for 11/11/14
by Diane Yang, Kara Shen, and Chris Lim

Process control

Game plan:
e fork
e exec
° ipes

All code can be found in the 119 directory

Fork
forkl.c
Recall that fork returns 0 to child and returns child’s process ID to parent
e Thus, we know that the child’s process ID cannot be 0
e We also know it cannot be negative
e Note that a child’s PID can be less than its parent’s
Race condition: when behavior of a program depends on scheduling
e Often the cause of bugs. Hardest to debug when the bug only surfaces rarely
e nfork() is useful for debugging because it makes these bugs appear more often
o Nondeterministically causes the parent or the child to run first.
e fork(), in contrast, causes the parent to run first
o (note: only because it's more likely the parent runs first since the function returns to the
parent—there is still a chance that as soon as the return happens, the scheduler intervenes
and runs the child!)

nfork.h

e Nondeterministically runs child or parents first
o Doesn’t change behavior of fork, just makes nondeterminism more obvious for us

e Why does the parent run first when use the normal fork?
o Normally a system call always returns to the process that made the system call
o The only way that we could get the printf from the child first is if the timer interrupt in a very

specific place
e S0, to prevent program from crashing when this sometimes does happen, need to program
pretending that it will happen all the time

fork2.c
e This code will create 4 processes, print 4 lines

fork2b.c
e This code will also create 4 processes
e BUT it will output 7 lines when written to a file.
o Why?
m First prints a line to standard output, then forks twice
m When the standard io library notices that the output is directed to terminal, it
doesn’t buffer anything, it is written to the console

m When the standard io library detects that the output is directed to a disk file, it
privileges throughput over latency
e Latency: speed it takes to get anything done
e Throughput: speed it takes to get a bunch of work done
e leaf analogy: one single leaf would have small latency but low throughput
too
e Ideally, we want low latency and high throughput!

b lotend
/ J 7k 4
]DV¢ ~#%rvﬁjdfuﬂ %iyk. 7ﬁrﬂ%j rv

m So stdout hooked up to console — low latency mode
m stdout hooked up to file on disk — high throughput mode

forkmix.c
e When you run it, you see 10,000,000 lines - a block of “baby”s and a block of “MAMA”s
o Fork buffers its output
e When you pipe it into a file, you would expect to see exactly 10,000,000 lines.
e However, you only see *roughly* 10,000,000 because of a race condition in Linux (this is intentional,
because it's faster).
e You would see exactly 10,000,000 on a Mac, for example.
uniq x - takes out consecutive duplicate lines except the first of each set of duplicates
e We find that uniq x (after having done ./forkmix > x) yields strange output! Why?
o Because our strings are not a power of 2, and size of each buffer is 4096!

forkmix2.c

e Outputs 5,000,000 characters instead of 10,000,000 characters
e Why? See below!

More on the processes/forking to explain forkmix2.c
Shell process opens a file x
e There is a disk that contains data for the file
e There is a file structure that represents the open file
When shell runs forkmix
e Creates forkmix program whose file descriptor table points to the file descriptor (slot 1)
e Forkmix then forks
o Makes copy of file descriptor table, but does not copy the open file structure
o Parent and child are sharing the open file description (but they have different file
descriptors)
e Writes not meant to collide
compare: when shell runs forkmix2
e File descriptor table
e Forked to created forkmix2
e Calls fopen(x)
o Each has different open file description (both point to disk)
e Each process has different offset into the file, and they both start at 0
o Result: overwrites file completely
o Outputs 5,000,000 characters (instead of 10,000,000 characters)

,/[%@rkm]ﬁ\ > X% Zﬁ%ﬂﬁ(MkXQV <

sh N] — Eal = Pork
-l =
Tl
y :
— K_@mj o T “T
TJUCS 7(} ”)gcr\ —ﬁﬁ
p f £

£ !
o) A &/

@C) j Jisk @ } dislc

=

Exec
myecho.c
e myecho shell
o Prints “about to exec...”
o Call execv
o Prints “finished exec...”
e But the finish line printf is missing!
o Shell replaced itself with myecho
o Only way that the the last line is printed is if exec fails
m exec only returns -1 or never returns

runmyecho.c

Sieve of Eratosthenes

O ®

{{\ﬁ& O-{ rCN*@S%LC{VCS

e Algorithm to find prime numbers
o Given a stream of natural numbers, every time you see a new prime, ignore all of its
multiples in the rest of the stream
e We can model this using Unix processes!
o seq program gives numbers in range
o filtermultiples prints numbers that are not multiples
e seq 2100 | .ffiltermultiples 2 | .ffiltermultiples 3 | ./filtermultiples 5...

Pipes
e How to make the above command line happen automatically?
o pipe: system call for creating a pipe
m int pipefd[2];
m intr = pipe(pidpefd);
m pipefd[0] = READ END
m pipefd[1] = WRITE END
o When a process calls pipe, creates a new file structure in the kernel, opens two file
descriptors (one to the write end, one to the read end)
m Data written to the write end is readable from the read end

pipedemo.c
e Opens a new pipe
e Forks
o Copies file descriptor table
o Copies descriptors to the pipe
e Child writes from the write end
e Parent reads from the read end

More on pipes:

pipesizer.c

primesieve.c

When does a pipe indicate end of file?

(¢]

o}
e}
e}

Pipe reads end of file when all write ends to the file are closed

Pipes are associated with a buffer in the kernel

Allows write end to generate a bunch of data before read end is accessed

remember: close both parent and child write ends of pipe to receive EOF signal on read
end!

How to figure out how big the buffer is?

¢)

o

Don’t read from the read end
Keep writing, and eventually the writer will block

Opens a pipe
In a loop, writes one character to the pipe
Stops until the buffer is full

64 KB

On each step, create a new child process by calling pipe and then fork

¢)

Call pipe every time because number of pipes is proportional to the length of the sieve

Parent process stands at the end, receiving new primes

o

When receives a new prime, calls and new pipe, new child, forks the child

dup? - take file descriptor that isn’t 0 or 1 and moves it so that it will be 0 or 1
First child: runs seek

©)

All later children: run filtermultiples

Reset parent process to read from the last injected
Read next prime from standard input

Print the prime, go around the loop

LOOK AT CODE YOURSELF!

Donald Knuth article
The power of pipes: can find the 10 most common words in a long article using only 6 shell
programs + pipes

