VIRTUAL MEMORY I

By Armaghan Behlum, Kyle Franseen, Linda Song, Jasmine Yan

Tips for homework:

e Put return values for exception in %eax

e Pidis process id
o 1/process
o Owner is pid most of the time.
o Value for owner says that it belongs to the kernel
o Another value says that it is reserved

e Do we ever work with memory by its physical address?
o A few. One such installs the virtual memory page table.

x86 Page Table Review
31 22 21 12 11 0

%CTB LV 1 LV 2 OFF
VM IDX IDX

e L1 page table located at %cr3 in VM.

o L1index in address of L1 pagetable: find physical address of L2 pagetable and
some flags
o DON'T FORGET THE FLAGS! If entry treated as a pointer, make sure to remove
the flags.
Bottom 12 bits possibly flags
o Make sure to mask off the bottom 12 bits (not just the bottom 3!).
o Ifthe PTE_P bitis 0, then the entry is empty.
If an unprivileged process tries to reference an address without PTE_P bit set, they will
hit a fault.
If the kernel tries --> page fault, since it also cannot reference a non-present address.
If flag off in one level, it is treated as off on the other levels too.
o Ex: if you have PTE_P bit set on L1 pagetable of the address, but not L2
pagetable, treated as unset.
o Flags that matter are bitwise AND of all the levels.
If PTE_U and PTE_W only set on L1, then unprivileged addresses will cause a fault if
trying to reference the address.
o However, the kernel would not when trying to read.
When is it good that the kernel cannot write to some memory?
o Same reason why you might declare constants in C.
PTE_P - present. PTE_W - writeable. PTE_U - privileged.

In an ideal world, hello and welcome can keep swapping with each other. We saw a few
attacks in the last few weeks.

o Check out the v05 branch to see how hello is trying to turn off interrupts.
In p-hello.c: add these four lines of code right after the “HA HA HA DIE DIE.”

uint8 t* code ptr = (uint8 t*) 0x40048;
code ptr[0] = Oxeb;

code ptr[l] = Oxfe;

sys _getpid();

0x00040048 is a kernel address for sys49_int_handler, the interrupt handler.
The evil hello has put two instructions there from its own code!

o The instruction causes it to just jump to itself, so it enters an infinite loop.

o Reason: fe is -2, so it goes back twice to where eb is, and eb is a jump.

o The jump is measured relative to the next instruction pointer. So jump 2 spots

before the next instruction pointer, which is back to the eb, or the jump.

OK for process to enter infinite loop since we have timer interrupts to handle them.
But in this tiny OS, bad when kernel enters an infinite loop like this, since interrupts are
always disabled for the kernel.
In real OS, some parts where interrupts are disabled, i.e. startup when saying states.
Solution: make sure processes cannot write into kernel memory (step 1 of pset!)
This tiny OS also has a virtual_memory_map function which you can call with proper
flags:

virtual memory map (kernel pagetable, 0, 0, PROC START ADDR,
PTE P | PTE W);
e But causes an unexpected interrupt 14 = page fault. We need to re-map the console!

Console
e Physical portion of memory that can be used to talk to other devices.
e Array of memory mapping to chars on screen.
o First 80 elements are top row of the screen.

Back to OS 1
e How can | make the console accessible? Map the console itself! Like so:
virtual memory map (kernel pagetable, console, console, PAGESIZE,
PTE P | PTE W | PTE U);
e How to fix the kernel accessing memory that is illegal? Jump to v08.
o This process does something it should not, causing interrupt -> marks process
as dead
%cr2 contains the address that faulted when a page fault occurs.
This system fault is a trap because the fault was intentionally called.
o The instruction pointer is set to the next instruction when a trap occurs.
e What about a fault?
o Fault time instruction pointer: instruction that failed, vs next instruction.
o This lets us re-try the failed instruction.
e One solution for a problematic instruction is ignore it.
o In this instance, works to jump 7 bytes forward (not all bad instructions will be 7
bytes!).
e Now jump to v10.
o Similar to step 2 of pset
o Hello is modifying the memory of another process!
o One fix: make a new pagetable for hello
m Not allowed to access another process’s pagetable
m Process 1 will pagefault, process 2 can continue running, but slowly
m Reason: process was shifted to an infinite loop (because of earlier fix of
add 7 trick).

Confused Deputy Problem

e Privileged code acts on behalf of unprivileged code.
o Ex: Any system call
o Problem: if privileged code is tricked into doing something inappropriate.
o No combination of system calls should mess up process isolation!

e Our operation system has a ramdisk.
o Allows user processes to use portion of memory like a disk

m Can be read from or written to by the process.

o Attempt by kernel: error checking so users don'’t try to read/write more than the
ramdisk allows
o Also fails on integer overflows.
e See v12 for confused deputy
o Ramdisk lets us convince kernel for permission to run CLI
o How? Writing to ramdisk permissions needed to run CLI
o Then have ramdisk read to a buffer, where the registers actually are for process
m Ramdisk will change the permissions of the process, so it can run CLI.
m We've convinced kernel to do something the unprivileged process could
not do!
o To fix this, the kernel has to check if the user has permissions to write to that
address.
e Another example: os02/p-recurse
o Run the OS, then hit “b.” Doing so causes lots of function calls! Fault!
o Why? Lots of recursive calls, eventually run out of stack space --> page fault.
m Now in unmapped memory
o Solution: allocate a page where there is unmapped memory. It works!

