CS61 Scribe Notes - Oct. 30, 2014
Hannah Blumberg, Ryan Grossman, Kelwen Peng

Process Isolation: What features? How? Why?

Practically, process isolation involves separating each process in the unique context of
several different “resources” the machine has at its disposal. This isolation is done at two
levels within each of these contexts: the level of the hardware and the level of the Kernel.
These are closely interlinked with each other as seen in the descriptions below.

e Resource: CPU time
o What does isolation mean in terms of CPU time?
m Every run-able process eventually runs
o Hardware support:
m periodically interrupt
o Kernel support:
m (1) needs to catch the interrupt
m (2) needs to schedule the next process
e Resource: Interrupts
o What does isolation mean in terms of interrupts?
m One process's interrupt can't affect another process
m Can a process prevent an interrupt when it's running?
e No, otherwise it'll prevent process isolation
m Process cannot disable interrupts or change interrupt handlers. *K*
e *K* mean that kernels are allowed to do such things, but a smart
kernel would never change timer interrupts (recall from last
lecture when we allowed our program to turn off the timer
interrupt)
o Hardware support:
m hardware has privilege bits
m processor refuses to execute some processes when in unprivileged
mode; (cli, 1idt) are dangerous
m hardware needs a correct definition and understanding of privilege bits
(Who defines this? Intel and other processor corporations make this
decision)
o Kernel support:
m ensures that processes run in unprivileged mode
e Resource: Registers
o What does isolation mean in terms of registers?
m One process changing the register shouldn't affect other registers
m Processes behaves as if it owns all registers
m Registers of one process and registers of another process are disjoint
and aren't related
o Hardware support:

m Save registers during exceptional control flow (refer to exceptional
control transfer part of the textbook)
o Kernel support:
m provide each process with its own set of registers
m How is this done?
e By saving the registers in memory
m Process descriptor contains process's registers
Resource: Memory
o What does isolation mean in terms of memory?
m No access to memory of the kernel and other processes
m But under the guise that it has a lot of memory
m Processes can't read or write kernel memory or other process memory
o Hardware support:
m need a mechanism that prevents processes from reading or writing into
other processes or kernel's memory — this is called virtual memory
m Indirection layer that prevents illegal accesses by unprivileged code
e Indirection: example is a pointer; rather than looking directly at a
data, we look for the place that gives us the location of where the
data is
o Kernel support:
m sets up the layer/virtual memory that isolates processes (memory
accesses)

Virtual Memory

Virtual Memory, abstractly, is a function that provides a mapping to a
Physical address: example is a home address
VM makes everything be like PO boxes
Hardware is needed for virtual memory
o if the kernel executes and oversees virtual memory, processes slow down

Potential VM Functions

begin with a struct with a boolean isfault and uintptr_t pa;
(all functions can be found in ~/cs61-1lectures/116/fakevm.c)

0.

Byte-indexed array
a. Have an enormous array with special registers that only the kernel can change
(in the same way only the kernel can only change the privilege level)
b. Index 0 is VM(0), index 1 is VM(1), etc...
c. Problems: array is WAY too big: 2*° (uses more bytes of memory than we can
address)

vM(e) | vM(1)

T

VM

1. Paged-indexed array
a. Instead of every byte, we divide the memory into units called PAGES

b. All address in a page map similarly
c. In example: pagesize = 4096 (it should be a power of 2 and equal or greater

than 64 because 64 bytes is a the size of a cache line)
i. 4096 is a good choice because it's the pagesize of an x86 processor

d. This decreases the size of the array needed to 10%

vM(e) | VM(1)

T ©-4695 4095-8191

VM

2. Page-indexed array with integrated “isfault™ bit
a. (we skipped over this function in class, but the idea is that the fault bit should

not take an entire byte)

3. Radix tree
a. Each level has 2'° children
b. This greatly decreases the amount of space required to store these pages
c. Inthe best case, the array has a size of size 2'*; however, it does not improve

the worst case scenario (still has a size of 10%?)

va
virtual address page # offset
31 12 11 5]

page #

[5
pa
T i offset
Pr—

VM

va

; L1IDX L2IDX

virtual address level 1 index level 2 index offset
L1IDX

b d

VM

