
Scribe Notes CS61 Thursday, October 23, 2014

General Approaches to CS61 exams and life:

When faced with a long/difficult question use form hypothesizes/guesses and test through scientific
examination.

Example: label the following data structures with their corresponding assembly code.

array
array of array pointers
linked list
binary tree

Solution: examine their complexity and number of assembly code lines. Examine the number of calls. It is
NOT necessary/efficient to try and completely understand the assembly code for a question like this.

stacksmash:

This is a type of attack when someone tries to overwrite the return address of a function. This can happen if
someone is able to write more data than can fit into a buffer. This can be achieved for example if the
function gets is used.

Attempting to stacksmash!
1) If we try a buffer overflow attack on a buffer that uses gets. Gets is dangerous because it will read an
unlimited amount of data without returning an error. However, when we use gets to try and overwrite the

return address and get an error meaning our attempt was foiled. How???

Answer: gets actually uses get_chk that ensures that the size is big enough to fit the amount of data we are

trying to write.

2) We can then get around this by using a function like read_line that calls get_s. This way, gets is masked

and not identified by the compiler. See below

read_line(char* buffer) {
 if (gets(buffer))
 return 1;
 else
 return 0;
}

 We still get an error and are thus foiled. How???

Answer: Gcc keeps us safe using thread local storage area.
%gs stores the canary in between buffer and return address at some random place: this way, buffer overflow
will modify the canary and the program will quit.

