
CS 61: Lecture 12 Scribe Notes

Gavin McDowell, Chung Wei Shen, Derek Di Nardo

October 21, 2014

NOTE: Midterm Thursday (2014-10-16) in Emerson 105. Midterm review
section Today (2014-10-14) Midterm is open book, open note, open internet,
open computer. Only use wiki, man pages, notes; no videos, Piazza, question
sites.

Unions

struct A
{

int a ;
int b ;
int c ;

} ;

. . .
s izeof (A) = 12 ;
a l i g n (A) = 4 ;

s izeof (union A) = 4 ;
a l i g n (union A) = 4 ;

Unions are dangerous: easy to achieve nasal demons. Think of manipu-
lating unions as manipulating memory with casts.

union A
{

1

int a ;
char c [4 7] ;

} ;

s izeof (A) = 48 ; // char array padded by 1 by t e
a l i g n (A) = 4 ;

Assemply Control Flow

i.e. Complicated Data Access

f24.s

f :
movl a , %eax
movl (%eax) , %eax
ret

Parenthesis in ASM mean dereference.

f25.s

f :
movl a , %eax
movzbl (%eax) , %eax
ret

%eax is a scratch register. Even programs that don’t return a value can
use it. If a program does something useless with %eax, it probably does not
return a value.

In f25.s, we use %eax, and don’t store it in a global or anything, so it
probably returns. a unsigned char*, return value likely unsigned char or
unsigned.

Moves the 4 bytes of a into the register, then dereference the first byte
pointed to by %eax and stores it in %eax, then return.

movzbl: b = byte z = fill with 0 In C:

extern signed char∗ a ;

int f (void) {
return a [0] ;

2

}

f26.s

movsbl = sign-extended, movzbl = zero-extended

f :
movl x , %eax
movl a , %edx
movzbl (%edx,%eax) , %eax
ret

third line means add %eax to %edx and then dereference. In C:

extern unsigned char∗ a ;
extern int x ;

unsigned f (void) {
return a [x] ;

}

Digression

War in ’80s, ’90s. CISC-RISC war. x86 is a complex instruction set. Alter-
nate ways to build the machine used smaller instruction sets that do every
instruction exactly explicitly. Smaller instruction sets prettier and easier to
write a fast machine. No good arguments against RISC, but it lost. Because
Intel. Programs that are compiled into CISC are smaller.

f28.s

(base , idx , sz)
base + idx ∗ sz
. . .
f :

movl a , %eax
movl x , %edx
movl (%eax,%edx , 4) , %eax
ret

3

In C:

extern int∗ a ;
extern int x ;

int f (void) {
return a [x] ;

}

f29.s

f :
movl a , %eax
ret

This simply returns ‘a’.

f30.s

f :
movl $a , %eax
ret

$a returns the address of a.

f32.s

f :
movl 6161 , %eax
ret

returns the value at the address 0x6161

f33.s

f :
movzbl (%eax,%edx , 4) , %eax
ret

Looks like dereferencing an int array
actually treating a struct as an array of chars and then asking for the first

element.
In C:

4

struct f ou r by t e s {
unsigned char k ;
unsigned char l ;
unsigned char m;
unsigned char n ;

} ;
extern struct f ou r by t e s ∗ a ;
extern int x ;

int f (void) {
return a [x] . k ;

}

f34.s

f :
movl (%eax,%edx , 8) , %eax
ret

object very likely to be an array because of the style of dereference.
In C:

struct two words {
unsigned k ;
unsigned l ;

} ;
extern struct two words∗ a ;
extern int x ;

int f (void) {
return a [x] . k ;

}

f35.s

f :
movl x , %eax
s a l l \$4 , %eax

5

addl a , %eax
movl (%eax) , %eax
ret

separate instructions for each step in the indexing.
dereferncing an array of structures. 4 ints in each structure. If sz in

(base, idx, sz) is not 1, 2, 4, or 8, the compiler must write out the arithmetic
explicitly.

In C:

struct four words {
unsigned k ;
unsigned l ;
unsigned m;
unsigned n ;

} ;
extern struct four words ∗ a ;
extern int x ;

int f (void) {
return a [x] . k ;

}

f36.s

f :
movsbl 3(%eax,%edx , 4) , %eax

Actual form

o f f = 0(base , idx = 0 , sz = 1)
o f f + base + idx ∗ sz

a+4 ∗x+3 constant 3 comes from asking for the 3rd element in a struct
of ints.

f37.s

f :
l e a l 3(%eax,%edx , 4) , %eax

6

load effective address: compute the effective address and then don’t deref-
erence it; just move the address into the destination argument.

Exactly the same as f36.s, except return &(thing)

f38.s

Everything is a number to the compiler. It will also use leal with anything
that can be most easily computed using that process, even if it’s not an
address.

return a [x] . n ;
// i s e q u i v a l e n t to

return a + 4∗x + 3 ;

f39.s

f :
movl x , %eax // load x into %eax
l e a l (%eax,%eax) , %edx // add x to i t s e l f , s t o r e in %edx
addl a , %eax //
l e a l 3(%eax,%edx) , %eax
ret

Moving instruction pointer around

f40.s

.LFB0 :
. . .
cmpl %edx , %eax
jge .L2
movl %edx , %eax

.L2 :
ret

.LFE0
. . .
i f (a > b)

ret a

7

else
ret b

Compiler changed the order of things. jge corresponds to else.

f :
%edx = a
%eax = b
i f (%edx >= %eax) // ?

re turn b ;
else

re turn a ;

WRONG

cmpl x , y
// i s equ iva l en t to

sub l x , y == y −= x
+ test i f r e s u l t >= 0

f :
%edx = a
%eax = b
i f (%eax − %edx >= 0)
b − a >= 0
return b ;
else
re turn a ;

cmpl does the same subtraction as subl, but throws away the result, with
the exception of storing metadata about the subtraction in special registers
called flags. Jump instructions then check the flag registers, so cmpl changes
those for jge to look at.

Like cmpl, subl ALSO changes all of the flags, so the compiler will some-
times use a normal operation like subl.

f41.s

f :
movl b , %eax
cmpl x , %eax

8

jne .L2
movl a , %eax

.L2 :
ret

jne x, %reg: jump if x not equal to value in %reg

f42.s

je x, %reg: jump if x is equal to value in %reg

f44.s

f :
cmpl \$0 , a
f s e t e %al
movzbl %al , %eax
ret

sete: extracts the equal flag, which is true if a == 0

f45.s

Same
Note: cannot compare two things from memory. Only understands reg-

isters.

f46.s

testl: like cmpl, but with a bitwise & instead. All backward jumps are loops

f :
t e s t l %eax , %eax
je .L4 // true i f and only i f %eax == 0

// return 0 i f x == 0
. . .

cmpl %ecx , %edx
jne .L3 // loop i f

// C code
i f (x == 0)

return 0 ;

9

rv = 0 ; %edx = a ;
while (%edx!= &a [x])
{

rv += ∗%edx ;
%edx += 4 ;

}
return rv ;
. . .
int rv = 0 ;
int ∗a ; int x ;

for (int i = 0 ; i != x ; ++i)
rv += a [i] ;

return rv ;
. . .
int rv = 0 ;
int ∗ i = a ;
int ∗end = &a [x] ;
while (a != end)
{

rv += ∗ i ;
i++;

}
return rv ;

Computes the sum of the elements of an array of ints.
leal does not set flags.

Local Variables

Local variables stored on the stack.
In asm, %esp is the stack pointer.
At the beginning of a function, there is at least one thing on the stack:

the return address.
Even chars are 4-bytes big as stack arguments.

unsigned f (unsigned i)
{

10

return i ;
}

Arguments stored on the stack immediately after the return address.

f48.s

Two arguments. Sum function. Returns the sum of its two arguments.

f49.s

Has 8 arguments, only uses the first two, asm exactly the same as f48.s

f50.s

f :
push %ebp
movl %esp , %ebp
sub l \$8 , %esp
ca l l g
leave
ret

Need to preserve the value of %ebp.

11

