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1 Announcements

e Sam Fishman/Victor (Part of the Crimson): Oct 18-19 Harvard Hackfest at the iLab
(sponsored by LiveRamp). Grand prize $500, Junior category grand prize $250 (per
team member). Contact sam.fishman@thecrimson.com

e Problem Set: Office hours on Friday. Grading server is being fixed.

e Midterm next Thursday (different location). Sample questions will be posted.

2 Machine Instructions and Machine programming

e Instruction: A series of bytes that the processor interprets to perform a specific
task.

e Assembly Language: A very low-level language where each machine instruction is
given a mnemonic name.

e Memory Hierarchy: Registers are at the top, followed by caches, then primary
memory. Since registers are on the CPU itself, they are extremely fast, but there are
only about 8 general purpose registers with 32 bits each.

Today, we will try to guess what .c files could have produced the .s assembly code.

e Strategy: Make and test assumptions, look for patterns, infer meanings from the
names of instructions.

& 100.s

.file "£00.c"
.text

.globl f

.type £, @function



f:
.LFBO:

ret
.LFEO:
.size f, .-f
.ident "GCC: (Ubuntu 4.8.2-19ubuntul) 4.8.2"
.section .note.GNU-stack,"",@progbits

From .type f, @function, we can infer the function name is f. This function just
returns, and does nothing else. How could we figure out the machine code version of
the retinstruction?

— Option 1: Make the object code file, then use objdump -S £00.0

— Option 2: Use hexdump (from a previous lecture), and give it £’s address.

In this way, we may find that ret has the hexadecimal value c3.

& f0l.s

.file "f01.c"
.text
.globl f£
.type £, @function

f:

.LFBO:
pushl  Y%ebp
movl %esp, %ebp
movl $0, %eax
popl %ebp
ret

.LFEO:
.size f, .-f
.ident "GCC: (Ubuntu 4.8.2-19ubuntul) 4.8.2"
.section .note.GNU-stack,"",@progbits

— From pushl and popl, we can infer that we’re using a stack, which has the push
(add to top) and pop (remove from top) operations. Since push and pop cancel
each other out, we see that the state of the stack is the same at the beginning
of the function as at the end (right before return). We use the stack to store
local variables.

— movl will just put the value in the source (first argument) into the destination
(second argument). The 1 here means the data being moves is 32 bits, and dates
from a time when the word size on machines was only 16 bits, so 32 bits was
considered “long.”



— The dollar sign $ represents a constant value. The percent sign % represents a
register. %eax is the most important register, called the accumulator, and stores
the return value.

— Thus, the line movl $0, %eax stores the value 0 in %eax.

— We see that in f01.c, the function just returns 0 (a 32-bit integer).

When optimizing, we find that the move into %eax and return are necessary, but the
push and pop don’t have any effect and so may be optimized out.

& 1028
This is optimized. From here on out, we’ll just be showing the important parts of
the file.

movl a, heax
addl b, %eax
ret

— a and b are global variables. From the suffix 1 in the commands, we determine
they are 32 bit values. However, they could have type int, float, char®, unsigned
int, array of 4 chars, etc.

— New command: addl src dst in pseudo-C is dst += src.

— The C file is just return a + b, two ints. Note that in the machine, there are
no types (these exist only in the abstract machine).

& f03.s

— The contents are the same as {02.s.

— In the .c file, we adds two integers, but one is unsigned. This tells us the
instruction is the same for adding signed and unsigned integers (a result of
using Two’s Complement Arithmetic in the machine representation of signed
integers).

— We note that if he changes the order to b + a instead of a + b in the .c file,
the assembly code remains the same. This is because addition is commutative,
so the compiler is free to choose the order.

& f04.8
The code is the same. Guess the types! In this case, we're adding the 0-th element
of an integer array and an integer. Note that the address of the first element of the
array is the same as the address of the variable referencing the array.
If we recompile with -O0, and read the result in pseudo-C, we get:



%hedx
fheax
Yheax

= b;
+= Yedx;

¢ Questions following the break

& 058

.LFBO: and .LFEO: mark the beginning and end of the function. Labels that
start with a period are used by the compiler only, and disappear from the object
file. Labels such as f: are accessible at runtime and represent addresses in the
machine code, for example the beginning of a function.

The keyword extern in C applied to a variable means the variable is defined in
a different C file.

The assembly code we’re looking at is machine specific (only x86 processors can
run it), but not C-specific. For example, a Java program may eventually compile
to this same assembly code.

Same assembly as f04.s. We find out the C file is doing address arithmetic with a
char* and an int, returning a value of type char*.

& 106.s

& 078

Same assembly as f05.s. The variable a has type unsigned long long (8 bytes)
and b has type int (4 bytes). The C code is return (a & OxFFFFFFFF) * b.
Note that a number is stored with the least significant byte at the lowest address
in memory (a system called Little Endian), so the number 1 as an integer would
be laid out in memory as 01 00 00 00, where each pair of numbers constitutes
one byte.

The bitwise-and has the effect of “masking” the lower 32 bits (note 8 hex digits
is 32 bits). This means that the higher 32 bits are thrown away, so the compiler
can treat this like a 32-bit integer.

movl a, heax
subl $3, Jeax
ret

The C code is return a - 3, where a is an int.

$ f08.s



— Same assembly as f07.s. Guess the types!
— Well, a is still an int, but the code is return a + 4294967293;.

— In the machine, this number is the “same” as —3. This is because when we add
3 to it, we get 232 in the world of math, which is 0 in computer arithmetic, since
the highest order bit is dropped as overflow.

& 109.s
Skipped in lecture
& f10.s

f:

.LFBO:
pushl %ebp
movl %hesp, hebp
movl x, hedx
movl y, heax
addl %hedx, ‘heax
movl Y%eax, a
popl %ebp
ret

.LFEO:
.size f, .-f
.globl g
.type g, @function

g:

.LFB1:
pushl %ebp
movl %hesp, %ebp
movl x, hedx
movl y, heax
subl Yeax, hedx
movl Y%edx, heax
movl Y%eax, b
popl %ebp
ret

.LFE1:
.size g, .~ g
.globl h
.type h, @function

h:

.LFB2:
pushl  Y%ebp
movl %esp, %ebp
movl x, hedx



movl y, heax
imull Y%edx, heax

movl Yeax, c
popl %ebp
ret

.LFE2:

Here we see three functions, f, g, and h, that manipulate the global variables a, b, c,
x, and y. The first sets a = x + y, the second b = x - y, and the third ¢ = x * y.
Note use of the command subl and imull.

O flls

The new commands we see are:

movzwl  x, %edx
movzwl y, heax

movw Y%ax, c

— We know that movl moves a 32-bit number. The w stands for “word,” which
was 16 bits long ago, so movw moves a 16-bit value.

— But movzwl has both 1 and w... The z stands for zero, so what it’s actually
doing is moving 16 bits into the destination register, and extending the other,
higher-order 16 bits with zero.

— We see the C code is the same as in f10, but the variables have type unsigned
short (2 bytes) instead of unsigned int (4 bytes).

& Interlude on Registers

— x86 has about 8 general purpose registers, 6 of which are generally used for
arithmetic. These are: %eax, %ebx, %ecx, %edx, %esi, %edi. The e stands for
“extended” and means the register holds 32 bits (earlier, registers held 16 bits).

— Looking at %eax (numbers represent bit addresses):

%ah %al
—N——
32(...115]...1817]...|0
hax

Here we see that %ax represents the lower 16 bits, the lower order byte is %al, and
the second-lowest order byte is %ah. This naming pattern also applies to %ebx, %ecx,
and %edx.



O 128

We see the same assembly code as f11 but with unsigned chars.

$ f13.s

Skipped in lecture.

O fld.s
New

commands are andl, orl, xorl, and notl, representing bitwise and, bitwise or,

bitwise exclusive or, and bitwise complement (which is twiddle ~ in C).

$ f15.s

& f16.s

New

O f17.s

xorl Yeax, heax
ret

This has a return value, as there is no reason to modify %eax if there were no

return value. In pseudo-C, we can write this command as %eax 2 %eax, which
has the effect of setting %eax to zero.

How did he write C code to get this weird assembly that just returns zero?

All he did was compile at -O3. It turns out this is more efficient because we
don’t need to load data into registers.

If we compile f01.c with -O1, we get the command movl $0, %eax. Printing
this using objdump, we see

0: b8 00 00 00 00 mov $0x0, %eax
5: c3 ret

Whereas printing f15 gives us:

0: 31 c0 xor Yeax, Yheax
2: c3 ret

We see an immense savings (50%) in code size!

movl x, heax
negl heax
movl Yeax, a
ret

command: negl negates a value. This just sets a to -x.

The same assembly code as f16. However, the C code is different: a = ~x + 1. This
means the compiler believes what he told us earlier, namely -x == ~x + 1.



& f18.s

$ f19.s
This

a =

& 120.8
New

pushl %ebp

movl %hesp, %ebp
movl x, /hedx
movl %hedx, heax
sall $10, %eax
subl Y%edx, heax
movl Yheax, a
popl %ebp

ret

We know x is moved into %edx, then moved into %eax, so we're keeping 2 copies.
Shifting between registers is faster than loading the value twice, since operations
involving two registers are faster and their instructions more compact than those
involving constants.

s means shift. sall is a left-shift. In the above code, we're left-shifting the
value of %eax by 10, which is equivalent mathematically to multiplying it by
210,

Pseudo-C for the above code:
%hedx = Yeax = x;

fheax <<= 10;

a = %eax - %edx

Shifting is much faster for the processor than multiplying (expensive) or dividing
(very expensive, ~100 cycles). So, if you know you’re multiplying or dividing by
a power of 2, do it with a shift (~1 cycle).

The C code for this program is a = x * 1023. But we’re multiplying x by 1024

(using left-shift) and then subtracting x at the assembly level to avoid the actual
multiplication operation. The compiler is even doing this at -O0!

has the same code as f18.s but we’re not subtracting anything, so we just get
x * 1023.

command: shrl, which is a logical right-shift (will move zeros into the most

significant side after shifting). Thus, shifting right by 10 is equivalent to dividing by
1024. Note that it’s very important that the numbers are unsigned. The C code is

a =

x / 1024.



O 1218
We get the same assembly code when the C code is a = x >> 10.

O 1228
Same C code as f21.c, except we change the type to signed integers and see the
command sarl appear in the assembly.

$ 1238

Here we’re dividing a signed integer by 1024 in the C code. We get very nasty assem-
bly. The point is that integer division is actually more mathematically complicated
than unsigned division because the C abstract machine requires that we round to 0.
For example, —1/4 evaluates to 0. But we know that an unsigned representation of
-1 is a very large number (232 — 1), and dividing this by 4 will definitely not yield
zero. Thus, the division and multiplication instructions on the machine have both
signed and unsigned variants.



