CS61 Processor cache, Eviction policy, Memory Mapped 10
Scribes: Jessica Xu, Eela Nagaraj, Shai Szulanski, Brian Wong

Storage Hierarchy caches:
Block Size Total size organized in
8B 16%8 =128B aligned units of
648 32KB 64 bytes
[To e pee
/]__3 4B Registers are
. kind of cache
Primary Memory AGB s 64 bit

machine has 64

/ \ bit register.

L1 - L3: caches in between registers and memory which get bigger and slower as we move from L1 —
L3 (happiest in L1 cache)

Looking at Matrix Example
for 1=0ton)
for j =0 to N)
for (k=0to N)
C[i*N + j]+=a[i*N + K] * b [K*N +j]

exact same number of memory accesses.
switching j and k loops would see no difference if they actually took the same amount of time,

but there's actually 20x difference.
e spherical postman analogy: gets more than just one piece of memory, so the more memory there

is, the physically farther away it becomes
a block is called a cache line — 64 byte unit of memory
Bitwise arithmetic

In Decimal — 1947 - (1947%1000) = 1000
1947 - (1947%100) = 1900

Strategy for binary is the same:
a=0x123FABC
0x123FABO // these hex values match up, so they fit the same 64 byte unit
all of the following are the same:
a - a%64
a- (a&63) // & is a bitwise operator version of &&
a & ~63 // ~ *twiddle, flips bits, Is«—— 0s; -1 =~0 — -x = ~(x-1)

**Remember that 63 = 0111111, only one bit difference between 63 and 64

How processor caches work by aligning units of 64-bytes:
Ist address in $ line containing a 0x123FA80

— Threw away its lower 2 bits.
— Units of 4 bits. Throw away lower ones, then 2 lowest of second most significant

Matrix Fun:
e We have 3 Matrices filled with doubles
o 1000 doubles on a side, 100 cache lines per side
® Dbest (speediest) way to access cache lines — sequentially

=

Evaluating speed of access orders
e outermost two loops accessed in the same way,

innermost loop determines whether we are —

attempting to access horizontally (sequentially, e.g
fast) or vertically (SLOW) 'J;
best/good: i k j ~1 sec
meh/bad: ij k ~10 sec

worst: j k1 OR kji~35 sec
O 1as iterator results in vertical memory access
o one full round of inner loop = 1000 + 1000 + 1 = 2001 cache lines

Eviction policy:

Cold misses: misses resulting from an empty cache— inevitable because we need to fill cache (“warm
up the cache™)
Conflict misses: misses resulting from the eviction policy selected

Capacity misses: cache is not big enough, resulting in misses
Belady's anomaly — adding slots to a cache reduces the hit ratio
e FIFO suffers from Belady’s, but Least Recently Used does not
o Best real policy: least recently used (is the one that gets evicted)

e Omniscient policy: evict the block that will be used the furthest in the future
o The omniscient policy can sometimes be approximated using software hints
o application gives hints; OS informs program’s data’s use — e.g. “will read file
sequentially”, allowing policy modification to better suit future data use
m other example of hints: madvise: don’t need
**Multiple Processes running®* — all trying to use same cache, therefore we lose some benefits of the
cache.

Memory Mapped 10

stdio stdio cache: slot size = 4KB; single slot cache
U / I.'“' I.f '\:\x — 50 total size = 4096 bytes
< y II'-. Vo | \ e testing to find the total size of cache:
L O run experiments: ex)
A B C D m write 4KB block
m write another 4KB block

E F G H buffer $ m read the block

| g K L O use strace
/ buffer $: slot size also = 4KB

— total size = about 4GB;

w (almost size of primary memory)

Stdio is slow for strided access patterns — relies upon system calls, which are slow™
How can we speed up strided access calls?
e add slots to stdio cache
o **how many can we add before it is too expensive to afford?**
m if we have enough slots to contain entire buffer, then we end up using 2 bytes of
memory per byte of file data — inefficient

e use kernel's memory via mmap
o kernel puts portion of the buffer cache for the file and puts at the address of file
m ‘“‘creates space in memory that is the file”
o has the same effect as reading a byte at a time, but with a single system call makes all
bytes of a file available in memory to the application
m unlike reading a byte at a time, functions well with strided access calls
Note: first call to load data into memory is expensive
OS manages buffer

memory

| . Modified diagram with mmap

buffer $

'I'I
@
T

"\
—
>
-

disk

