
CS61 Scribe Notes: November 29, 2012
Michelle Luo, Jamie Ryan
 
Table of Contents

General announcements
Threads

Crashing serviceserver
How to Organize the Stacks

Synchronization
Multithreaded Example
Increments and Decrements
Critical Sections
Locks and mutual exclusion

General announcements
Assignment 5 will be released after class, due last day of Reading Period

● pong61
● Adversarial network pong

○ Each circle will be a new connection to the server
○ The server will periodically drop a few packets

■ These are the black explosions
■ Handout code doesn’t know what to do when this happens

● Phase 2
○ Server delaying responses
○ Waits for a connection to return before moving to another
○ Will slow down considerably

● Phase 3
○ Not only loss and delay, but server doesn’t want you to overload it with 

connection attempts
 

Threads
● Last time: threads used to process multiple connections in parallel
● A thread abstracts a CPU

Crashing serviceserver
When we run serviceserver with serviceblaster, serviceserver dies

● Commands run:
○ in l23 repo



○ ./serviceserver07

○ ./serviceblaster

○ error: Cannot allocate memory

● Why? What memory is being allocated?
○ Every thread has its own stack
○ Multiple threads need multiple stacks because stacks store local variables with 

automatic duration.
■ i.e. The lifetime of the variable is the lifetime of the containing function

○ The stack contains a set of activation records for functions
○ Memory gets laid out like this: 

 
■ Stack grows down, heap grows up

 
Main difference between threads and processes:

● Threads share certain data (code, data, heap, kernel) because they abstract a CPU 
rather than the whole computer

○ Threads therefore have better utilization of memory than multiple processes
In order to create a new thread, we need to find space for it’s stack

How to Organize the Stacks
Idea: stacks on top of each other:

● This can be achieved w/ virtual memory:

● But this is not how multiple threads are actually implemented
 



To discover where stacks actually occur, we can print out the addresses of local variables.
In serviceserver07:

● We get 0x6bf7935c, 0xb777a35c
● Typically, a stack address would be 0xbffff + some noise
● Here, the stack addresses change every now and then

○ A security measure
○ This makes it harder to execute a stack smashing attack
○ This technique is called address space layout randomization

 
Actual picture of the stack:

 
Here, we see that a significant chunk of memory exists between the stacks. This is so that they 
have room to grow down.

● This allows us to call deeply recursive functions
● If one stack hits another or the heap, this would be a stack overflow
● The error message above doesn’t mean the machine is out of physical memory, it 

means that there is no more space for stacks in the address space.
 
What is the advantage of this over placing stacks on top of each other (virtual memory)?

● The code in serviceserver07.c calls pthread_create with these arguments
○ (<thread id>, <attributes for the new thread>, <function 

that should run when thread starts>, <arguments for that 

function>)

○ Here, we are passing f to connection_thread
● If different threads had different virtual memory spaces, it would be impossible to pass 

addresses of arguments on the main stack, since threads wouldn’t be able to access 
other thread stacks

 
In modern machines, the stack pointers are stored in the kernel, along with each thread’s 
registers. Consequently, the kernel manages switches from one thread to another.

Synchronization
synchronization: The art of writing correct, multithreaded code.

● What does correct mean?
 



Multithreaded Example
Suppose we have 2 thread functions:
void t1(void *arg) {

    int *p = (int *) arg;

    (*p)++;

    return 0;

}

 

void t2(void *arg) {

    int *p = (int *) arg;

    (*p)--;

    return 0;

}

 

main(...) {

    int x = 0;

    pthread_create(..., t1, &x);

    pthread_create(..., t2, &x);

     

    // wait for threads to exit

 

    printf(“%d\n”, x);

}

 
What you might expect to be printed out: 0
But this program has no semantics

● This leads to the nasal demons problems
● The two threads are accessing the same variable at the same time, and doing writes to it 

at the same time, which is illegal.
● If run on an x86 machine, this might generate 0, or 1, or -1

○ We might need to run many many times in order to actually get a bad example
● This is an example of a race condition

 
race condition: A bug that is dependent on scheduling order
 
An example of this bug, using a machine with 48 cores:
./serviceserver10.c

● thread_count is a global variable, analogous to *p in the code above
○ The number of threads outstanding at one time
○ When a new thread is started, increment
○ When serviceserver exits, decrement the thread count
○ We expect thread_count to equal the number of threads

http://www.catb.org/jargon/html/N/nasal-demons.html
http://www.catb.org/jargon/html/N/nasal-demons.html
http://www.catb.org/jargon/html/N/nasal-demons.html


● The code is written to do 1000 increments and 1000 decrements
○ Written in a way that it won’t be optimized out
○ Theoretically, this should do nothing

● When we run serviceblaster and open 400 connections, we should expect that 
thread_count == 400

● But under gdb we see that the actual value == 3071486790
 
What goes on when a variable is incremented in one thread, decremented in another, and a 
weird results occurs?

Increments and Decrements
possible x86 instructions for incrementing a variable:

● incl (%eax)

● addl (%eax), $1

 
But the incl instruction is not actually executed in a single atomic step, since arithmetic can’t 
be done on memory.
 
The processor breaks incl i into 3 smaller steps:

● 0.1. Load (%eax) into T (a hidden temporary register)
● 0.2. T <- T + 1
● 0.3. Store T into (%eax)

 
Similarly, the decrement instruction decl is broken into steps

● 1.1. Load (%eax) into U
● 1.2. U <- U - 1
● 1.3. Store U into (%eax)

 

Suppose there are two cores, one executing incl and one executing decl:

Suppose initial value in (%eax) == 0



● Potential order of steps:
○ 0.1
○ 0.2
○ 0.3
○ 1.1
○ 1.2
○ 1.3
○ -> final value is 0

● Another possible order:
○ 0.1
○ 1.1
○ 1.2
○ 1.3
○ 0.2
○ 0.3
○ -> final value is 1

 
How this progresses:
 

 T U (%eax)

0.1 0  0

1.1 0 0 0

1.2 0 -1 0

1.3 0 -1 -1

0.2 1 -1 -1

0.3 1 -1 1

 
 
In these cases, we are assuming that the instructions don’t interfere with each other

● In particular, we assume that the cores’ caches don’t interfere
● This is a false assumption
● When a write goes to a cache, the processor caches are not immediately coherent, so 

the write of -1 and 1 might be reordered by the processor caches
● So it’s also possible to get -1 with this exact same order of instructions

 
 
 
 



Critical Sections
Point: When we access the same memory location in multiple cores, and not all of them are 
reads, we get weird results

● We need to enforce a critical section to fix this
 
Problem: Race conditions caused by simultaneous access to shared variables, where at least 
one access is a write

● If all accesses are reads, they will all return the same value, so race conditions only 
become a problem when writing is involved

● Race conditions for individual instructions don’t occur if there is only one core
 
critical section: Sets of instructions so that no race condition occurs unless 2 or more cores are 
executing instructions from those sets simultaneously
 
In our example, a trivial critical section would be the set of all 6 of the instructions.
We use locks to convince the processor that these instructions form a critical section.
 

Locks and mutual exclusion
mutual exclusion (mut ex): Prevents multiple threads/cores from executing a critical section 
simultaneously
lock: Object that provides mutual exclusion
 
Code modified from before:
void t1(void *arg) {

    int *p = (int *) arg;

    acquire(&l);

    (*p)++;

    release(&l);

    return 0;

}

 

void t2(void *arg) {

    int *p = (int *) arg;

    acquire(&l);

    (*p)--;

    release(&l);

    return 0;

}

 
Suppose we have an object that supports two operations:

● acquire: Must block until the lock is released; in one step set to acquired state



● release: Puts the lock in released state
 
State diagram for the lock:

At most 1 thread can pass the acquire state and execute the critical section. It then releases the 
lock and another thread is allowed to acquire it.
 
Possible implementation of a lock:
typedef int mutex_t;

0 = RELEASED 1 = ACQUIRED

 

void acquire(mutex_t *l) { void release(mutex_t *l) {

    int x; *l = 0;

    while (*l != 0) }

        /* do nothing */;

    *l = 1;

}

 
but this requires a lock too! There is a critical section in acquire!
 
Alternative:

● Consider a function swap switches values in a register and memory atomically
○ swap’s actual x86 name is xchgl

 
atomic - defined by the architecture to happen in one step
 

void acquire(mutex_t *l) {

    while (lock xchgl /* swap(l, 1) */)

        /* do nothing */;



}

 

void release(mutex_t *l) {

    *l = 0;

}

 
This method of mutual exclusion works!
 
Two possible situations:

 
Atomic exchange is key to mutual exclusion
hypothetical swap (to see how the lock/swap xchgl function works):
 
int swap(int *x, int y) {

    // Exchange value in *x with y

    // Returns previous *x

}

 
Speed of the swap

● On a machine with 48 cores, to ensure that lock xchgl is truly atomic, it has to 
prevent all of the other cores from accessing that memory at the same time and that it 
has the most up-to-date version of the memory

○ Must go to all the other cores, get new values
■ This is called the Mezzi protocol
■ Ends ups being very slow

● This will execute thousands of time slower than a typical instruction
● So now our problem is that the more correct the code is, the slower it gets.


