CS61 - Lecture 23 -11/27/2012

--- Scribe Notes A by Hoang and Katzenelson

Agenda
1. Network programming

2. Serve programming
a. File Descriptors
b. Forked Servers
c. Threaded Servers
d. Event-driven Servers (if we have time)

Overview
e Today is about utilization.
e We will see lots of system calls as we learn different ways to structure network servers
e Explain system calls as we go along

*Code in L23 Directory

Last Time
e getservbyname(servicename, protoname): function on unix machines that implements a
portion of the network database,
o ex. servicename: “discard”
o ex. protoname: “tcp”
o returns a structure that represents the numeric information , ex. 9
o Is slow for repeated use because it doesn’t store the database
e Implemented a cache (store the database) that allowed us to look up multiple services
very quickly
e |[f all machines needed to look up services very quickly, then they would all have
their own copies of these caches (multiple copies of databases with the exact same
information)
o What we will try to do is allow many processes on this computer (and any other
computer) to utilize the same cache

This Time
e Will turn this function call into a remote call
e Goal for the lecture: implement a server cache to reduce redundancy

Look at the code!
e serviceparser.c
e void handle_connection(FILE * fin, FILE *fout):
e loops over the lines of the input file
e removes trailing whitespace
e pass results to getservbyname function

Serviceparser program:

II serviceparser EI

Why isn’t this sufficient for implementing a cache that can be used by more than one program?
e Only one input/output location which are not (easily) sharable
e Connect input with cat and output with sort

cat ﬂD serviceparser @__, sort
e Or connect both input and output with cat
cat h—-ID serviceparser @_\, cat

What is different about cat and sort ?
e Cat fills a 4096 char buffer before it outputs
e Cat does stuff incrementally as it reads in the input
e Sort needs to accept everything, sort has to read the entire input before it can produce
anything because it has to know what order to output them in
Sort needs to see an end of file before outputting, in this case: ctrl+D
cat: example of a streaming program: generates output incrementally

yes | ./serviceparser | sort
e nothing happens because sort is waiting for the end of file on the input file, never sees
one
yes | ./serviceparser | cat
e does not need to see end of file to execute

This explains why “cat | ./serviceparser| sort” does not return any output unless we press ctrl + d
to signify end of file

Ex. (cat; cat; cat) | ./serviceparser
e We have three cats that are hooked up to the same service parser (using the same input
file)

t

7/

Serv

keyboard| pars

oL
i} /
|

;” means do one until it's done, done means ctrl+D

Will execute first cat first, then the second one, then the third

File closes after “ctrl+D” has been entered 3 times, one for each cat

All sharing the same std input, the keyboard; also all sharing the same std output

Ex. (cat& cat& cat&) | ./serviceparser
e “&” means run command in background, the specific command keeps executing but the
rest of the command line continues
o sleep 1: wait for one second
o sleep 2; echo p; sleep 3; echo x: wait for a total of 5 seconds (wait 2, print p,
then wait 3, then print x)
o sleep 2& sleep3& : returns after 0 seconds
m programs are being run in parallel with the shell
m both sleep 2 and sleep 3 are running in parallel
o sleep 2& sleep 3: returns after 3 seconds
o sleep 2; sleep 3 &: returns after 2 seconds
e One point: we can share file descriptors across multiple programs; makes it seem like
we can use normal file descriptors to do this server cache
Input is also shared, such that each line gets executed by one “cat”
However, we can’t distinguish which “cat” is being used when running the program (can’t
distinguish the connections) because they all have the same FD
e Also can’t have each input read only its own output

socket: A file descriptor used for networks; supports listening
listening socket: waits for another program to connect, creates a FD for it
sockets, like pipes, are not seekable

serviceserver00.c
e int fd = make_listen(port) // Creates/prepares a listening socket
o Lots of stuff involved to make the listening socket (don’t need to understand
these details)
o Many other system calls required
Socket interface not as standardized as a regular FD - have to use lower level calls
FILE *f = fdopen(fd, “a+”)
o takes a file descriptor and turns it into a file (gives you all the same
awesomeness of buffer io)
e handle_connection(f, f);
o socket is combining reading and writing stream for the same file descriptor
o same basic process as before
e Sockets have a read stream and a write stream on a single FD

hopper

serviceserver ﬂ

Initially this doesn’t work. Why?

e Listening socket is not connected to anything. It's simply a stake in the ground. It only
acts a place holder, has no other purposes. Therefore, when we try to read/write this
place holder we receive an error

e Its only purpose is to start new connections. We need another system call.

serviceserver01.c

e intcfd = accept(fd, NULL, NULL);
o waits for a file connection from the listening socket, accepts, and then makes a
new file descriptor
o at the same time, the listening file descriptor stays where it is
e if(cfd<0){
perror(“accept”);
exit(1);
Y
close(fd);
e Then can call handle_connection

3|
serviceserver01 S "discard" ,
-— client
4|} . I:
new FD/ _“9" >

run: “telnet localhost 6168”
e telnet allows us to make connection attempts to servers we do not understand
e on input “discard”, we receive “discard, 9” - it works!
e When we exit and try to reconnect, it does not work - why not?
o We closed the file descriptor as soon as we accepted one connection; therefore it
cannot accept any other connections
e We also see “discard” at the command line when we exit serviceserver01 - why?
o serviceserver can’t accept the input because of the closed connection. The shell
takes keyboard input also. Input just goes there instead

/ shell *\\

keyboard Serv '

pars
M sewe; el

serviceserver02.c
e fixes the problem of exiting prematurely by introducing a loop
e while (1) {
int fd = make_listen(port);...

fclose(f);
}
e How many listening sockets will we have over the course of the program?
o Atleast one per connection because we close it each time
e can now make multiple connections, but we still can’t make simultaneous connections
because there’s no listening socket
o It's like trying to open a file that doesn’t exist
e Kkernel says to connection attempts go away when a listening socket isn’t there

serviceserver03.c
e int fd = make_listen(port);...
while (1) {

}

e different from serviceserver02 because no longer creates a listening socket inside the
loop
Instead makes one at the beginning and accepts multiple connections on it
While one connection works, we are able to make other connections. But, those other
connections are dormant (nothing happens)
o Only when we exit the active connection do the other connections start working
o Why?
m Although there is only one listening socket, the listening socket is fine.
m The issue is with the connected socket

S S telnet telnet

U (31 [41] [1 [1
accept / /
>

e What happens when we have 3 connections?
o There is a queue of waiting connections; other telnets will wait their turn in the
kernel
o serviceserver does not call accept on the waiting connections because it is
waiting for end of file for the first one
o The data telnet sends is ignored until accept is called

/serviceblaster 1000

e attempts 1000 connection attempts. It will work. but does serviceserver have high
utilization?

e utilization of this server: Prof. Kohler doesn’t think it is very good. Multiple connection
attempts, multiple clients trying to ask questions; however, it can only handle one thing
at a time

o rookie mistake: server has given control to other people on the network. never
give control to other people

e how to improve utilization/make this system work?

o what if we call interrupt? - Event driven server

o Can't call accept before there’s a connection because the machine will get stuck
until it's handled, which it may never be

o what if we handled separate connections in separate processes!

Calling fork to improve serviceserver03.c
e // handle connection
pid_t p = fork();
o copy-on-write fork means that cache memory is shared
o fork returns twice since it creates a copy. to the original, it returns the new
processe’s id. to the child it returns 0.
o want to handle connection in new process and let parent go back to listening
o know it's the child process if p ==
o if(p==0){
FILE * f = fdopen (Cfd, “a+”);
handle_connection(f,f);

fclose(f);
o starts a new process but does not close the parent process

Parallel telnet connections work!
Inside terminal there is a shell. Inside the shell we ran serviceserver03 once.
serviceserver03 created two children, one with each telnet call. In total, there are three
serviceserverQ3 processes running
All processes are listening on the same accepted socket (that is shared by all of them)
After we exit the child process, the system continues to remember that the process has
existed because the parent process still is tracking the child process’s pid returned by
fork

e System is waiting for the parent to check up on the child (see whether it has exited). We
can use the “wait” system call to do this check

o this is how “;” works

e // Adding in the following line of code will allow us to end with only one serviceserver
signal(SIGCHILD, SIG_IGN); // ignore your children, process level version of interrupts

e New problem - serviceserverQ3 gives the internet control over how many processes are
being run

e This can cause the server to create an arbitrarily large number of processes and fail

serviceblaster.c

e |f we keep running this, we open more and more connections and start more and more
processes, theoretically infinite

e Original run capped at 1020 processes because the new connection was still present in
both the parent and the child - need to close it in the parent

e Once we fixed that, we created a state where the machine was full of processes and
couldn’t fit any more

o This is a problem because we should always be able to create a shell process to
shut down the other processes

What if there were a way to have multiple logical threads within a single process?
Process: abstract computer (abstraction of the cpu, primary memory, file descriptors)
Thread: abstract CPU, much more light-weight (share fd, fd tables, memory, etc)
single-
threaded

) 200

multi-threaded

serviceserverQ7.c
e calls pthread_create to create a new thread
e instead of creating new processes, we are creating new threads - 2 threads within a
process
e calls connection_thread: handles connection for thread and then exits

Preventing attacks
e serviceblaster fails at 482 connections for serviceserverQ7.c because the server ran out

of memory

Need to limit number of incoming connections

One way: put fork in its own loop, limit it to n=20 times

This spawns 20 processes by preforking, all share a socket

