
CS61 - Lecture 23 - 11/27/2012
--- Scribe Notes A by Hoang and Katzenelson

Agenda

1. Network programming
2. Serve programming

a. File Descriptors
b. Forked Servers
c. Threaded Servers
d. Event-driven Servers (if we have time)

Overview

● Today is about utilization.
● We will see lots of system calls as we learn different ways to structure network servers
● Explain system calls as we go along

*Code in L23 Directory

Last Time

● getservbyname(servicename, protoname): function on unix machines that implements a
portion of the network database,

○ ex. servicename: “discard”
○ ex. protoname: “tcp”
○ returns a structure that represents the numeric information , ex. 9
○ Is slow for repeated use because it doesn’t store the database

● Implemented a cache (store the database) that allowed us to look up multiple services
very quickly

● If all machines needed to look up services very quickly, then they would all have
their own copies of these caches (multiple copies of databases with the exact same
information)

○ What we will try to do is allow many processes on this computer (and any other
computer) to utilize the same cache

This Time

● Will turn this function call into a remote call
● Goal for the lecture: implement a server cache to reduce redundancy

Look at the code!

● serviceparser.c
● void handle_connection(FILE * fin, FILE *fout):

● loops over the lines of the input file
● removes trailing whitespace
● pass results to getservbyname function

Serviceparser program:

Why isn’t this sufficient for implementing a cache that can be used by more than one program?

● Only one input/output location which are not (easily) sharable
● Connect input with cat and output with sort

● Or connect both input and output with cat

What is different about cat and sort ?

● Cat fills a 4096 char buffer before it outputs
● Cat does stuff incrementally as it reads in the input
● Sort needs to accept everything, sort has to read the entire input before it can produce

anything because it has to know what order to output them in
● Sort needs to see an end of file before outputting, in this case: ctrl+D
● cat: example of a streaming program: generates output incrementally

yes | ./serviceparser | sort

● nothing happens because sort is waiting for the end of file on the input file, never sees
one

yes | ./serviceparser | cat
● does not need to see end of file to execute

This explains why “cat | ./serviceparser| sort” does not return any output unless we press ctrl + d
to signify end of file

Ex. (cat; cat; cat) | ./serviceparser

● We have three cats that are hooked up to the same service parser (using the same input
file)

● “;” means do one until it’s done, done means ctrl+D
● Will execute first cat first, then the second one, then the third
● File closes after “ctrl+D” has been entered 3 times, one for each cat
● All sharing the same std input, the keyboard; also all sharing the same std output

Ex. (cat& cat& cat&) | ./serviceparser

● “&” means run command in background, the specific command keeps executing but the
rest of the command line continues

○ sleep 1: wait for one second
○ sleep 2; echo p; sleep 3; echo x: wait for a total of 5 seconds (wait 2, print p,

then wait 3, then print x)
○ sleep 2& sleep3& : returns after 0 seconds

■ programs are being run in parallel with the shell
■ both sleep 2 and sleep 3 are running in parallel

○ sleep 2& sleep 3: returns after 3 seconds
○ sleep 2; sleep 3 &: returns after 2 seconds

● One point: we can share file descriptors across multiple programs; makes it seem like
we can use normal file descriptors to do this server cache

● Input is also shared, such that each line gets executed by one “cat”
● However, we can’t distinguish which “cat” is being used when running the program (can’t

distinguish the connections) because they all have the same FD
● Also can’t have each input read only its own output

socket: A file descriptor used for networks; supports listening

listening socket: waits for another program to connect, creates a FD for it
sockets, like pipes, are not seekable

serviceserver00.c

● int fd = make_listen(port) // Creates/prepares a listening socket
○ Lots of stuff involved to make the listening socket (don’t need to understand

these details)
○ Many other system calls required

● Socket interface not as standardized as a regular FD - have to use lower level calls
● FILE *f = fdopen(fd, “a+”)

○ takes a file descriptor and turns it into a file (gives you all the same
awesomeness of buffer io)

● handle_connection(f, f);
○ socket is combining reading and writing stream for the same file descriptor
○ same basic process as before

● Sockets have a read stream and a write stream on a single FD

Initially this doesn’t work. Why?

● Listening socket is not connected to anything. It’s simply a stake in the ground. It only
acts a place holder, has no other purposes. Therefore, when we try to read/write this
place holder we receive an error

● Its only purpose is to start new connections. We need another system call.

serviceserver01.c

● int cfd = accept(fd, NULL, NULL);
○ waits for a file connection from the listening socket, accepts, and then makes a

new file descriptor
○ at the same time, the listening file descriptor stays where it is

● if (cfd < 0) {
perror(“accept”);

exit(1);
}
close(fd);

● Then can call handle_connection

run: “telnet localhost 6168”

● telnet allows us to make connection attempts to servers we do not understand
● on input “discard”, we receive “discard, 9” - it works!
● When we exit and try to reconnect, it does not work - why not?

○ We closed the file descriptor as soon as we accepted one connection; therefore it
cannot accept any other connections

● We also see “discard” at the command line when we exit serviceserver01 - why?
○ serviceserver can’t accept the input because of the closed connection. The shell

takes keyboard input also. Input just goes there instead

serviceserver02.c

● fixes the problem of exiting prematurely by introducing a loop
● while (1) {

int fd = make_listen(port);...
…
fclose(f);

}
● How many listening sockets will we have over the course of the program?

○ At least one per connection because we close it each time
● can now make multiple connections, but we still can’t make simultaneous connections

because there’s no listening socket
○ It’s like trying to open a file that doesn’t exist

● kernel says to connection attempts go away when a listening socket isn’t there

serviceserver03.c

● int fd = make_listen(port);...
while (1) {

...
}

● different from serviceserver02 because no longer creates a listening socket inside the
loop

● Instead makes one at the beginning and accepts multiple connections on it
● While one connection works, we are able to make other connections. But, those other

connections are dormant (nothing happens)
○ Only when we exit the active connection do the other connections start working
○ Why?

■ Although there is only one listening socket, the listening socket is fine.
■ The issue is with the connected socket

● What happens when we have 3 connections?
○ There is a queue of waiting connections; other telnets will wait their turn in the

kernel
○ serviceserver does not call accept on the waiting connections because it is

waiting for end of file for the first one
○ The data telnet sends is ignored until accept is called

./serviceblaster 1000

● attempts 1000 connection attempts. It will work. but does serviceserver have high
utilization?

● utilization of this server: Prof. Kohler doesn’t think it is very good. Multiple connection
attempts, multiple clients trying to ask questions; however, it can only handle one thing
at a time

○ rookie mistake: server has given control to other people on the network. never
give control to other people

● how to improve utilization/make this system work?
○ what if we call interrupt? - Event driven server
○ Can’t call accept before there’s a connection because the machine will get stuck

until it’s handled, which it may never be
○ what if we handled separate connections in separate processes!

Calling fork to improve serviceserver03.c
● // handle connection

pid_t p = fork();
○ copy-on-write fork means that cache memory is shared
○ fork returns twice since it creates a copy. to the original, it returns the new

processe’s id. to the child it returns 0.
○ want to handle connection in new process and let parent go back to listening
○ know it’s the child process if p == 0

● if (p == 0) {
FILE * f = fdopen (Cfd, “a+”);

 handle_connection(f,f);

fclose(f);
}

○ starts a new process but does not close the parent process

● Parallel telnet connections work!
● Inside terminal there is a shell. Inside the shell we ran serviceserver03 once.

serviceserver03 created two children, one with each telnet call. In total, there are three
serviceserver03 processes running

● All processes are listening on the same accepted socket (that is shared by all of them)
● After we exit the child process, the system continues to remember that the process has

existed because the parent process still is tracking the child process’s pid returned by
fork

● System is waiting for the parent to check up on the child (see whether it has exited). We
can use the “wait” system call to do this check

○ this is how “;” works
● // Adding in the following line of code will allow us to end with only one serviceserver

signal(SIGCHILD, SIG_IGN); // ignore your children, process level version of interrupts
● New problem - serviceserver03 gives the internet control over how many processes are

being run
● This can cause the server to create an arbitrarily large number of processes and fail

serviceblaster.c

● If we keep running this, we open more and more connections and start more and more
processes, theoretically infinite

● Original run capped at 1020 processes because the new connection was still present in
both the parent and the child - need to close it in the parent

● Once we fixed that, we created a state where the machine was full of processes and
couldn’t fit any more

○ This is a problem because we should always be able to create a shell process to
shut down the other processes

What if there were a way to have multiple logical threads within a single process?
Process: abstract computer (abstraction of the cpu, primary memory, file descriptors)
Thread: abstract CPU, much more light-weight (share fd, fd tables, memory, etc)

serviceserver07.c

● calls pthread_create to create a new thread
● instead of creating new processes, we are creating new threads - 2 threads within a

process
● calls connection_thread: handles connection for thread and then exits

Preventing attacks

● serviceblaster fails at 482 connections for serviceserver07.c because the server ran out
of memory

● Need to limit number of incoming connections
● One way: put fork in its own loop, limit it to n=20 times
● This spawns 20 processes by preforking, all share a socket

