Lecture 15-Part 1 Scribed by Tommy Chen

“[We are] swimming in the ocean of code. And keeping [our] heads above water.
[...] But we don’t get there by going in from the shallow end.”
- Eddie Kohler

Our Midterms
We started with some tips and considerations for the next test:

Treat the questions like little experiments. Rather than trying to understand every line of the
code, try making educated guesses or hypotheses about the code and testing them out.

For example, remember the question where we matched assembly code to data structures?

BAM - Hypothesis! The length of the assembly code is directly related to the complexity of
the data structure!

So let’s see if the array, array of pointers to arrays, linked list, and
binary tree match to assembly snippets of ascending length.

BAM - Checkin’ it! Linked lists and binary trees require loops to traverse. Do those two
code snippets have branches? Yeah!

The array code should only have one indirect memory reference. The
two references to load in arguments aside, does it? Yep!

The array of pointers to arrays should have no loops and more than one
indirect memory reference. Does it? Sure!

BAM - Conclusion! We can conclude with pretty good certainty that the length of assembly
code is directly related to the complexity of the data structure.

CISCO & Pals

There are a lot of wonderful resources on the Internet on binary math, many of which related to
the wonderful pursuit of becoming a CISCO certified network engineer. Here’re two of them,
one with an Australian accent:

https://learningnetwork.cisco.com/docs/DOC-2787

http://www.youtube.com/watch?v=WcV3nvWXVio

https://learningnetwork.cisco.com/docs/DOC-2787
http://www.youtube.com/watch?v=WcV3nvWXVio
Saagar
Text Box

Saagar
Text Box

Back in Virtual Memory (VM)

We return to our 2-level page table, with which we map virtual addresses to physical addresses.
Let’s say our PDP and PTP are at 0x8000 and 0x9000 respectively. Keep this in mind for later:

Virtual addresses (VA)
0 1 2 3 4 5 6 7 8 9 10

Physical addresses (PA)
0x0000 | 0x1000 | 0x2000 | 0x3000

PDP | PTP
0 1 2 3 4 5 6 7 8 9 10
PTP A page table page stores the mappings between virtual and physical addresses
along with associated permissions.
PDP A page directory page contains pointers to page table pages and stores their

associated permissions. In our simple OS, our PDP only points to one PTP and
works with three permissions.

Page A block is a chunk of 4096 bytes, just as an int is a chunk of 4 bytes. It’s just a
useful and generally accepted size for working with virtual memory.

4096 = 212 = 0x1000
Also useful to know, to convert from page numbers (PN) to addresses (ADDR):
PN « 12 = ADDR
So how many addresses (4 bytes) can be stored in a page (4096 bytes)?

212 212
T =5 = 210 = 1024 addresses
BAM - Fun fact!

219~ 103
220 ~ 10°
230 ~ 109

Gettin’ to the mappin’

But first, let’s look at the anatomy of a virtual address (in Little Endian):

| PDIndex (10 bits) | PT Index (10) \ Page Offset (12)
31 22 21 12 11 0

For kicks, maybe we should try mapping virtual address 0x10001456 to physical address
0x00000456.

BAM - Question! What is the page directory (PD) index of our virtual address?

0x10001456

Look at the diagram above! To get the PD index, we need to right-shift
out the PT index and page offset — together, 22 bits.

0x10001456 >» 22 = PD index

BAM - Quick and easy trick!

Remember! Every hexadecimal digit represents 4 bits. When we shift 4
in binary, we shift 1 in hexadecimal, as in:

0x1234 > 4 = 0x123
So instead of shifting 22, let’s think about it as shifting 20, then 2.
(0x10001456 > 20) » 2 = PD index
Shifting 20 means shifting 5 hexadecimal places:
0x100 » 2 = PD index
256 > 2 = PD index

64 = PD index

We'll do something with this knowledge soon, but first, a bit about
permissions...

BAM — Permissions!

It's good to establish what can or cannot be done with a page of memory. Can a process access
it? Is it writable? Does it exist? This kind of information can be embedded into a page address as
a permission. But how?

An address to a page, when properly aligned, is always a multiple of 0x1000 — the size of a
page, like: 0x12000, 0x4000 or 0x6000.

Look at all those 0’s! In every page address, the last 12 bits (3 hexadecimal digits) are 0. This
allows us to store some information there. When we want to use the actual address, we just

treat these last 12 bits as 0’s. This is how permissions are stored — in those last 12 bits.

So which permissions are we using in class and how are they represented?

PTE_P Exists 1 00001
PTE_ W Writable 2 00010
PTE_U Accessible to processes 4 0100
BAM - Sidenote! There are lots of other permission flags too! And they’re super exciting!

To embed an address with its permissions, we take the bitwise OR of an address with its
permissions:

0x1000 | 0b001 = 0x1001
And to check if an address has a permission, use the bitwise AND:

0x1001 & 0b001 = 0b001
0x1001 & 00010 = 0000

Gettin’ Back To That Mappin’

So back to our first problem: “For kicks, maybe we should try mapping virtual address
0x10001456 to physical address 0x00000456.”

We already found that the page directory index of our virtual
address is 64, so at the 65" cell of our page directory, we want
to point to our page table with PTE_P, PTE_W, and PTE_U
permissions. We know that our page table is at 0x9000 (if you

don’t remember, scroll all the way to the top). Knowing all of
this, let’s put it into action:

0x9000 | 06100 | 0b010 | 0b001 = 0x9007

So we put 0x9007 into the 65™ cell of our page directory. Now
what?

Now we go to the 2™ cell of our page table. Why 2"*? Well look
at our virtual address again:

0x10001456

In the region for our page table index, there is only a 1 at the
rightmost bit, so our page table index is 1.

And at the 2™ cell of our page table, we store our physical
address, 0x00000 (derived from the PD and PT indices of
0x00000456) along with our permissions again:

0x0000 | 0b100 | 0b010 | 0b001 = 0x0007

BAM — OH SNAP! We successfully mapped virtual address
0x10001456 to physical address 0x00000456.

BAM - PS!

What about mapping virtual address 0x10001789 to physical
address 0x000007897

This will have the exact same mapping. The PD and PT indices
are the same. Think about the PD and PT indices as house
addresses and think about the page offset as the specific room
in the house. Mapping virtual addresses to physical addresses
cares only about pages, not locations within pages.

Are you sure that’s contiguous?

BAM — IMPORTANT!

What’s so great about virtual memory? Imagine two contiguous
pages in virtual memory (ex. 0x8000 and 0x9000) mapped to
two non-contiguous physical pages (0x0000 and 0x2000). Our
program will treat these pages as contiguous even though
physically they’re not contiguous. You can have an array span
these two virtual pages if you want to! Neat, huh?

Bo Han
Thursday 10/25 Second half of lecture.
Topics covered: Another virtual address space example, applying virtual memory

abbreviations used:

pa = physical address

pdp = page directory page
pp = physical page

ptp = page table page

va = virtual address

vp 2> virtual page

[Time 00:00]
Example: another virtual address space for another process.

A new virtual address space requires a new page directory.
New page directory is located at physical address (pa) 0x10000

Let’s make identity mappings between virtual pages (vp) and physical pages
(pp).

Let the notation vp $addr mean the virtual page starting at $addr. Same for pp.
Let’s add vp 0x2000 -> pp 0x2000

What goes into the 0 slot of the page directory page (pdp)?

A page table page (ptp) is necessary.

Let’s create one at pp 0x3000

Let’s make identity mappings for vp 0x0000 to Ox4000 and pp Ox0000 to 0x4000

pdp at pp 0x10000

Index (1024 total) Value
0 0x3007
1 to 1023 0x0
ptp at pp 0x3000

Index (1024 total) Value
0 0x0007
1 0x1007
2 0x2007
3 0x3007
4 0x4007
5 to 1023 0x0

[Time 04:20]

There are problems with these mappings!

Pages that should be unknown are exposed:
index 3 of ptp at pp 0x3000 gives access to the ptp at pp 0x3000
index 0 of ptp at pp 0x3000 gives access to data

This is a problem because this process can access/modify all physical memory!
The process can modify its own page table (it has write access)

http://en.wikipedia.org/wiki/Physical_address
http://wiki.osdev.org/Paging#Page_Directory
http://wiki.osdev.org/Paging#Page_Table
http://en.wikipedia.org/wiki/Virtual_address_space
http://en.wikipedia.org/wiki/Process_(computing)

[Time 08:00]

Let’s say the process wants to access pp 0x10000. How would it do so given the

mappings above?

We want to modify index 2 of ptp at pp 0x3000. What va is that location?
0x3008 because index 0 is at 0x3000. The values are 4 bytes, so two
values beyond index 0 is 0x3008.

[Time 10:35]
Prof. Kohler makes comment possibly about previous year’s (CS61 professor Prof.
Chong, who has an Australian accent. (intention of comment unclear)

*(uint32_t *)0x3008 = 0x10007 replaces the mapping at index 2 of ptp at pp
0x3000 (this code creates a pointer from 0x3008 and dereferences it). Changes
in bold:

pdp at pp 0x10000

Index (1024 total) Value
0 0x3007
1 to 1023 0x0
ptp at pp 0x3000

Index (1024 total) Value
0 0x0007
1 0x1007
2 0x10007
3 0x3007
4 0x4007
5 to 1023 0x0

Now, the process has access to pp 0x10000 with full permissions (the
additional 7 is for permission bits PTE_U, PTE_P, PTE_W). It therefore has
access to its own pdp.

[Time 12:00]
Prof. Kohler: “Okay?”
Class: “Okay.”

[Time 12:44]

Question: Why has there only been one ptp in the pdps we’ve seen thus far?
Answer:

We’re dealing with small address spaces, so we only need one page table per
page directory. There can be up to 1024 page tables per page directory, enough
for all physical memory on a 32-bit system. However, in Weensy 0S, only 2 MB
(2,097,152 bytes) of physical memory needs to be accessed.

[Time 13:44]

Question: Why do we need two pdps then?

Answer:

We have two processes. Every process has a distinct address space, so we need
a new pdp for each process.

[Time 14:40]

http://people.seas.harvard.edu/~chong/
http://people.seas.harvard.edu/~chong/

Applying virtual memory for performance
The lecture code used is in the 0s02 directory.

Let’s look at a cool application of virtual memory.

Let’s run the third program, a recursive program to print out the triangular
numbers up to triangular number 999.

We expect that running this will print out 1001 lines, one for the hello
message and the one line for every triangular number.

Actually, we get only 127 lines, with an error message from the kernel
indicating a page fault caused by this process: “Write missing page from” a
particular instruction pointer. What happened?

The stack pointer kept moving down and eventually ran off of the single stack
page we allocated for it.

How do we solve this (assuming no modification of the source code for this
program)?

[Time 19:20]

What if we allocated two stack pages? Or eight? Or nine?

We decrease memory utilization. The processes that won’t need that much stack
space won’t use it. We should do stuff only when needed.

[Time 21:10]
What if we gave the process stack space only when needed?

Why don’t we use the page fault error message from the kernel as a trigger to
allocate a new page for the process?

[Time 25:20]
How do we code this?

// We get the faulting address:
uint32_t addr = rcr2();
// page is pa of an unused page
void *page = page_alloc_unused();
// addr & ~OxFFF sets the page offset to 0
virtual_memory_map(
current->p_pagedir, addr & ~OxFFF, (uint32_t) page, SIZE, 7
);

run(current);

[Time 28:26]

It works!

This 1s what happens every time you need to use more pages. This is an example
of virtual memory for performance.

[Time 30:15]
Virtual memory is also very dangerous.

Insert some assembly code:
asm(“movl $0x41000,%eax; movl %eax,%esp”);

http://en.wikipedia.org/wiki/Triangular_number
http://en.wikipedia.org/wiki/Triangular_number

This changes the stack pointer to point to the kernel. This triggers a page
fault, and the kernel will try to allocate a new page. The machine now reboots
because there’s too many errors in the kernel.

[Time 33:00]

How do we fix this?

// We get the faulting address:
uint32_t addr = rcr2();

// make sure the faulting address isn’t in the kernel
if(addr >= PROC_START_ADDR) {
// page is pa of an unused page
void *page = page_alloc_unused();
// addr & ~OxFFF sets the page offset to 0
virtual_memory_map(
current->p_pagedir, addr & ~OxFFF, (uint32_t) page, SIZE, 7
);

run(current);

