
Process isolation and virtual memory 

 

Process (two definitions): 

 1. An instance of a program in execution 

○ e.g. running the same program twice with the same input creates two different 

processes 

 2. An abstract computer: give program illusion that all HW resources of computer are at its 

disposal. 

 

Process isolation: 

 A process affects other processes only as explicitly permitted 

Violations:  

○ - P modifies Q's register 

○ - P modifies Q's memory 

○ - P prevents Q from running 

 

Implementation of process isolation: 

 If all processes have full privileges then it's BAD. Thus, we must have hardware support for 

different level of code privilege (otherwise process could always take over CPU). 

○ Privileged code gets full access. 

○ Unprivileged (process) gets partial access  

○ -> Kernel = Privileged code 

 

Example: 

 Infinite loop attack -> avoid by turning on timer interrupt -> processes must not be able to turn 

off timer interrupt (so for example, processes must not be able to call "out" or "cli") 

 

When a process violates process isolation -> abort(), error() or reboot 

The kernel enforces process isolation. If a process causes abort, the kernel kills it. 

 

Exceptional Control Flow (interrupts): 

Safely run kernel after process error 

○ This is called exceptional control flow or interrupt 

Or,  safely run kernel at process request -> system call 

 

Dangerous instruction: instruction that changes code privilege 

 

But we can’t prevent all attacks only through the CPU, example: 

Program p-hello.c writes bytes of "while (1) ;" into the place kernel memory  to where 

sys_getpid() redirects, then call sys_getpid() -> infinite loop attack 

○ Problem: memory is not isolated 

○ Solution: virtual memory 



 

Virtual memory maps virtual addresses used by processes to physical memory on machine. 

-> Virtual memory  = Address space function AS, where: 

  AS(ptr, privilege_level) = Physical memory address | Fault 

 

Picture of address space: 

          ____________________ 

 0x40000 ->  |     Kernel         | 

   |__________________ | 

   | Reserved Memory | 

   |__________________ | 

 0x100000-> | Process memory  | 

   

 

Do not allow the Kernel to write to the kernel memory (except for the console for memory I/O) 

Memory protection problem -> CPU changes the p-hello.c writing attack to a pagefault exception, and 

creates a handler for these exceptions 

● Normal solution for handler: kill the process 

● Another possible solution: the kernel just skips the bad instruction and then the CPU continues 

executing the process (not used normally) 

○ e.g. skip the “mov” instruction in p-hello.c by adding 7 bytes to the program counter, 

then restoring the registers to the CPU from memory and continuing program execution 

 

x86 virtual memory implementation: 

Two-level page table (tree of depth 2): 

a Page directory: root node in tree. This is an array of 1024 pointers to pageentry_t 

objects (pointers have 32 bit size). 

■ i.e. pageentry_t *kernel_pagedir[1024]) 

b Page table page: level 1 nodes. -> a pageentry_t: array of 1024 pointers into memory  

 

Then: 

 Input: virtual address (32 bit) 

  Page Dir: 1024 entries. Some are empty(labeled with X), some point to page table pages 

  Each page table page also has 1024 entries. Some are empty, some are non-empty and 

point to physical memory. 

 Output: physical address(32 bit ) 

 

Example translation with a page table: 



 
 

Input value, 32 bits:  PD index(22 - 31st bit) | PT index(21 - 12th bit)| offset (last 12 bits) 

 -> Go to physical address at the index PT index in the page table pointed to by PD index, then 

add the offset. 

 

Example input value: Virtual address 0x00403005 

-> binary: |0000|0000|0100|0000|0011|0000|0000|0101| 

-> split into PD, PT, and offset: |0000000001|0000000011|000000000101| 

-> PD index = 1; PT index = 3; offset = 5 

-> PD[1] -> PT[3] gives 0x10000000. Add 5 -> 0x10000005 is the output physical memory address 


