
Process isolation and virtual memory

Process (two definitions):

 1. An instance of a program in execution

○ e.g. running the same program twice with the same input creates two different

processes

 2. An abstract computer: give program illusion that all HW resources of computer are at its

disposal.

Process isolation:

 A process affects other processes only as explicitly permitted

Violations:

○ - P modifies Q's register

○ - P modifies Q's memory

○ - P prevents Q from running

Implementation of process isolation:

 If all processes have full privileges then it's BAD. Thus, we must have hardware support for

different level of code privilege (otherwise process could always take over CPU).

○ Privileged code gets full access.

○ Unprivileged (process) gets partial access

○ -> Kernel = Privileged code

Example:

 Infinite loop attack -> avoid by turning on timer interrupt -> processes must not be able to turn

off timer interrupt (so for example, processes must not be able to call "out" or "cli")

When a process violates process isolation -> abort(), error() or reboot

The kernel enforces process isolation. If a process causes abort, the kernel kills it.

Exceptional Control Flow (interrupts):

Safely run kernel after process error

○ This is called exceptional control flow or interrupt

Or, safely run kernel at process request -> system call

Dangerous instruction: instruction that changes code privilege

But we can’t prevent all attacks only through the CPU, example:

Program p-hello.c writes bytes of "while (1) ;" into the place kernel memory to where

sys_getpid() redirects, then call sys_getpid() -> infinite loop attack

○ Problem: memory is not isolated

○ Solution: virtual memory

Virtual memory maps virtual addresses used by processes to physical memory on machine.

-> Virtual memory = Address space function AS, where:

 AS(ptr, privilege_level) = Physical memory address | Fault

Picture of address space:

 0x40000 -> | Kernel |

 |__________________ |

 | Reserved Memory |

 |__________________ |

 0x100000-> | Process memory |

Do not allow the Kernel to write to the kernel memory (except for the console for memory I/O)

Memory protection problem -> CPU changes the p-hello.c writing attack to a pagefault exception, and

creates a handler for these exceptions

● Normal solution for handler: kill the process

● Another possible solution: the kernel just skips the bad instruction and then the CPU continues

executing the process (not used normally)

○ e.g. skip the “mov” instruction in p-hello.c by adding 7 bytes to the program counter,

then restoring the registers to the CPU from memory and continuing program execution

x86 virtual memory implementation:

Two-level page table (tree of depth 2):

a Page directory: root node in tree. This is an array of 1024 pointers to pageentry_t

objects (pointers have 32 bit size).

■ i.e. pageentry_t *kernel_pagedir[1024])

b Page table page: level 1 nodes. -> a pageentry_t: array of 1024 pointers into memory

Then:

 Input: virtual address (32 bit)

 Page Dir: 1024 entries. Some are empty(labeled with X), some point to page table pages

 Each page table page also has 1024 entries. Some are empty, some are non-empty and

point to physical memory.

 Output: physical address(32 bit)

Example translation with a page table:

Input value, 32 bits: PD index(22 - 31st bit) | PT index(21 - 12th bit)| offset (last 12 bits)

 -> Go to physical address at the index PT index in the page table pointed to by PD index, then

add the offset.

Example input value: Virtual address 0x00403005

-> binary: |0000|0000|0100|0000|0011|0000|0000|0101|

-> split into PD, PT, and offset: |0000000001|0000000011|000000000101|

-> PD index = 1; PT index = 3; offset = 5

-> PD[1] -> PT[3] gives 0x10000000. Add 5 -> 0x10000005 is the output physical memory address

