
CS61 Scribe Notes
Process isolation; Multiprocessing
Michelle Ran, Scott Zhuge
10/11/2012

Virtual machine

● Software implementation of a computer
● Analogous to a CPU with a physical chemical screen “dreaming” of a CPU with another

virtual screen which translates instructions to the physical screen

The following code creates a colored @ sign:
#include "os01-app.h"
#include "lib.h"
#include "x86.h"

void process_main(void) {
 unsigned i = 0;
 uint16_t *console = (uint16_t*) 0xB8000;
 *console = 0x8A00 | ‘@’;
 while (1)
 ;
 while (1) {

++i;
if (i % (1 << 10) == 0)
 app_printf(0, "Hello #%x!\n", i);
sys_yield();

 }
}

CPUs and hardware

● Programmed I/O
○ Special instructions to interface with hardware devices
○ E.g. inb, inw, outb, outl, etc.

● Memory mapped I/O
○ Region of memory is used to interact with device
○ What region of memory is used to interact with the virtual VGA console?

■ VGA console on x86 hardware is mapped as an array of 16-bit ints
@0xB8000

■ Upperleft corner of console screen stored at 0xB8000, next is 0xB8002,
down to the bottomright corner ar 0xB8000 + 3998

■ As CPU puts data into memory, the data is interpreted by the graphics
card to be put on the screen

■ Question: where does 3998 come from?
3998 = 2 (80 * 25 - 1) (80x25 dimensions for the screen, each is 2 bytes
wide)

● How does a virtual machine work?
○ Inside virtual machine is an operating system
○ QEMU processor emulator borrows memory from the laptop

■ QEMU is the virtual version of hardware
○ Inside the QEMU memory borrowed, it chooses a region for the virtual machine’s

memory: the OS01 memory
○ QEMU code is stored in QEMU memory, which is outside the virtual machine’s

memory
○ Inside laptop memory, there is a region for display
○ Inside virtual machine memory (inside QEMU memory) also has display memory,

implemented identically with a normal display memory
■ Hardware connects the normal display memory and screen
■ Software (QEMU) connects the virtual display memory with screen

● What makes virtual machines possible?
○ Information is bits + context

○ You think of instructions as something a CPU can execute
■ E.g. two bytes 0xEB 0xFE correspond to L2: jmp .L2

char *pc = …;
 if (pc[0] == 0xEB && pc[1] == 0xFE)
 infinite loop;

■ Not only can a processor interpret those instructions as a loop, because
you can write a different program to interpret those instructions differently

○ Representation of programs and data as memory allows us to do virtual
machines

○ Stored program computers (store instructions in memory), allow for virtual
machines

#include "os01-app.h"
#include "lib.h"
#include "x86.h"

void process_main(void) {
 unsigned i = 0;
 uint16_t *console = (uint16_t*) 0xB8000;

 while (1) {

++i;
if (i % (1 << 10) == 0)
 app_printf(0, "Hello #%x!\n", i);

 while (1) {
 ;
 }

sys_yield();
 }
}

● Above code hogs all memory, and doesn’t let the other operating system run
● With QEMU, can debug entire computer with GDB since it is just a program

Examine process_main, which is the first thing executed when the machine boots up

● Single-stepping through the gdb for the virtual machine shows up characters on the
screen (in this case “HA HA HA HA” in yellow)

● How to fix infinite loop?

Welcome code:
#include "os01-app.h"
#include "lib.h"

void process_main(void) {
 unsigned i = 0;

 while (1) {

++i;
if (i % (1 << 10) == 0)
 app_printf(1, "Welcome #%x!\n", i);
sys_yield();

 }
}

● sys_yield is a system call which allows other programs to run; implements something
called cooperative multitasking

○ This means that processes voluntarily give up CPU (cooperative)
○ Advantages: efficient
○ Disadvantages: vulnerable, because processes can just enter into infinite loops

● Alternative is preemptive multitasking
○ A process can be forced to give up the CPU involuntarily
○ Solves infinite loop attack, because processes can be forced to give up CPU
○ Requires special features from the CPU

Interrupts and exceptional control flow
What is an interrupt (exception)?

● Involuntary control transfer
○ Jump instruction is an example of a voluntary control transfer
○ CPU changes program counter (%eip) from one memory location to another due

to an external event
■ Interrupts -> caused by hardware (e.g. printer dies)

● Signals are sent to CPU so that the CPU can handle the
hardware’s requirements

■ Traps -> caused by software (e.g. system call)
■ Faults -> software error (e.g. accessing memory that doesn’t exist)

● To prevent infinite loops, have a “ticking clock” that periodically interrupts the CPU so
that another piece of software can run something else, called a timer interrupt

void timer_init(int rate) {
 // if the clock interrupt is enabled, initialize the clock
 if (rate > 0) {

outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(IO_TIMER1, TIMER_DIV(rate) % 256);
outb(IO_TIMER1, TIMER_DIV(rate) / 256);
interrupts_enabled |= 1 << (INT_CLOCK - INT_HARDWARE);

 } else
interrupts_enabled &= ~(1 << (INT_CLOCK - INT_HARDWARE));

 interrupt_mask();
}

void interrupt(struct registers *reg) {
 // The processor responds to an interrupt by saving some of the
 // application's state on the kernel's stack, then jumping to
 // kernel assembly code (in os01-int.S). That code saves more
 // registers on the kernel's stack, then calls interrupt(). The
 // first thing we must do is copy the saved registers into the
 // 'current' process descriptor.
 current->p_registers = *reg;

 switch (reg->reg_intno) {

 case INT_SYS_GETPID:

current->p_registers.reg_eax = current->p_pid;

run(current);

 case INT_SYS_YIELD:

schedule();

 default:

console_printf(cursorpos, 0x0C00, "\nUnexpected interrupt %d!\n",
 reg->reg_intno);

 loop: goto loop;

 }
}

● Function interrupt gets control of the CPU whenever an interrupt happens
● Can use a timer interrupt to stop a program from running too long... but this doesn’t allow

us to run the other process
○ Need to force it to run another process, system yield

void schedule(void) {
 pid_t pid = current->p_pid;
 while (1) {

pid = (pid + 1) % NPROCS;
if (processes[pid].p_state == P_RUNNABLE)
 run(&processes[pid]);

 }
}

○ Call schedule, which simply searches an array of processes for one to run
● Not doing enough timer interrupts compared to how often hello yielded the CPU

○ hello (not infinite loop version) executes five instructions, then yields the CPU

○ welcome executes five instructions, then yields the CPU
○ hello (infinite loop) executes as many instructions as possible until the timer

interrupts it (it gets away with 1 million instructions), then yields the CPU
● Kernel divides fair access to hardware resources among the processes

○ Allowing a single process to monopolize hardware is unfair
○ Successful kernels prevent processes from monopolizing resources

● However, the function cli() can disable timer interrupts
○ cli() is a dangerous instruction

Safe instructions vs dangerous instructions

Safe Instruction Dangerous Instruction

CANNOT violate process isolation (fairness
property)
One process cannot isolate CPU/kill another
process unless it has permission

Dangerous instructions can violate process
isolation

● Should be kernel-only
● Set of flags loaded into special

registers determine if the program
running as kernel or application
privilege

General protection fault

● Interrupt, involuntary control transfer into the kernel

