Wc is a better linecount

But weird boom function that prints boom

Figure out an input to this program that will cause it to print boom

In order to figure out this input, we need to reason about exactly what is on the
stack

Items in memory reacting to being

O O O O

pushl’d

Stack-smashing:
o Y%ebp is a register to keep track of arguments for use in larger functions (%esp moves)
o Called the ‘Frame Pointer’
o The book says that %ebp is a mandatory part of the calling convention and
o The book says that arguments are always referred to by the frame pointer -- the
BOOK LIES!
o The mandatory part is that it must be restored
o %epb USUALLY refers to arguments
How we smash-attack the function to bring up hello kitty.

New GDB Commands
e display/10i $pc == Display the next ten commands
e p $ebp = “print %ebp” — registers use $ at the start.

Verbose Notes

1. Today we will be going through more example files of assembly code. All of this
code is available in the class code repository. Here are details about each of the
example files:

a. File F37

i. What does this do
1. Comparing two arguments

i. What are we returning?
1. Some jump but we don’t know what
2. In order to unpack this need to unpack some of the weirder

aspects

iii. Actual code
1. Returning the max of aand b

iv. Why does this compile into what it does?
1. Cmpl

a. Jump greater than or equal to
b. But what is greater than or equal to
c. Only has one argument, and that is .L2
d. Looks like location in the program
e. Soitis saying thatif it is greater than of equal to
something else
v. Let’s try to peel this backwards to figure out what is in the registers
1. We know we have the function:
f(inta, intb)

if (a>b)
reta
else
retb

1. Which register holds a?
a. Ecx

b. A->%ecx
c. B->%edx
d. Where is the return value placed?
i. %eax
ii. Sowhatis jge testing?
1. Start with what we know, and work forward and backwards
a. Do values in ecx and edx change?
b. Ecx never changes
c. And we know the return value goes in eax
d. So know we know what the jge is comparing
i. What do we return if the jge fails
1. We move ecs into eax and fall through
2. Ifitfails, we return ‘a’
3. So therefore what is jge comparing?
a. Comparingb>=a
b. SojgeisaskingISb>=a
iii. So now the missing piece
1. Conditional branches in x86 work on a HIDDEN REGISTER, which is
called %eflags
a. Generic term for registers like this is condition code
b. Almost every arithmetic expression set the condition codes as
a side effect
i. Add doesnot justadd, it also sets condition code
ii. Only one that does not s lea

2. C.Codes
a. Setas a side effect of every arithmetic instruction
b. Flags

i. ZF - Last # was zero
ii. SF - Last# was negative (31st bit was 1)
iii. CF - Unsigned overflow
iv. OF - Signed overflow
c. What does jge test?
i. !(SF”"OR)
ii. Let’s compare with unsigned version of comparison (a
stands for above)
1. Jae
a. ICF
b. Alot of arithmetic has the same meaning
in 32it whether or not it is signed
c. But comparison not this way
2. Is 0x80000000<1?
a. Notif unsigned
b. Butif signed, the first is negative, so then
itis true
c. So comparison has two varieties, signed
and unsigned

b. F38

d. Addition, subtraction, all of these are the
same for signed unsigned
e. But comparison depends on the sign of

operands.
3. Jge has no arguments, so what are the arguments to the cmpl that set
the flags?
a. Aandb

b. What arithmetic is cmpl doing?
i. Subtraction, b -a
ii. This is the magic of the cmpl instruction
c. Cmpl R1 R2
i. Like doing subtraction and throwing result away, all
cmpl does is set the c.codes
4. Now let’s reason through some examples
a. Zf
i. Flags are always set
ii. So other flags (SF CF, and OF) are all set to false
iii. Signed overflow means that the answer has a different
sign then you would expect
1. For example (-1) - 1 should be negative, but if
because of wrap around it is positive, a signed
overflow has happened
b. cmpl $2, $-1
i. -1-2=-3
ii. !ZF, SF,!CF,!0OF
iii. Is negative one less than or equal to 2, yes
iv. So thisislike -1-2=-3
v. Because -1 is not equal to 2, so jge is false
c. Sometimes the previous instruction is add or multiple, or a
comp, but a comp instruction is usually what it done, because
all it does is set flags

What does this do?

1. Same
What it was intended to do, was to show that compiler could do different
code

i. Could have done this code in a different way, with a jl instruction
. By switching the ordering of the branches, could get equivalent assembly for

the input code, and what the compiler generates is based on its estimation of
what is likely
The way modern processors got fast, is that they guess what they have to do
in the future, and start working on it now
1. This is called pipelining
2. Modern processors enjoy long straight lines of instructions without
jumps or memory reads

3. When there is a branch in the control flow, the processor has to guess
which way it will go
a. Processors have to guess fast and correctly, and avoid hiccups
if the guess is wrong
vi. So what does this assembly do (particularly the many “nop”s at the end)
Movl
Movl
Movl
Cmpl

i. What does nop do?
1. No operations
2. Same in terms of function as previous
3. But this code is getting faster in one of the cases
a. This is likely to be faster whena >b
b. Why?
i. Ifa>Db, which branch is taken? The false branch
1. Because a is in eax and that is what we return
2. Where is the false branch located?--close to start
3. The true branch is father away
4. Ifthe true branch is followed, have to load them
in because they are farther away
5. Compilers actually do this all the time, based on
which branch they think is more likely
6. Get benefits of 20%, 30%, 40%, if the compilers
smash the likely cases together in memory, and
put the other ones somewhere else
i. What does __builtin_expect((x),0) do?
1. Return x, but behave as if x is likely to return 0
ii. What does Likely(x) __builtin_expect((x),1) do?
1. Return x, but likely 1
iv. Another way to accomplish performance gains this way is to use profile info
1. Compiler can log which branches were taken, run the program many
times, average results, and feed back in the appropriate information

i. Eaxisthe return value loaded with a, edx loaded with b
i. Cmplofx, %edg

iii. Jeisequal

iv. So if jge means last thing >=0

v. Je means jump if the last thing was 0

1. Cmpl means second argument being compared to some global x
2. Ifb==xreturn a, otherwise return b

c. F40
i. Same as previous, but not equal instead of equal
d. F41
i. Jae
1. Unsigned
2. Ifa>b, but using unsigned integers
e. F42
i. Testl
1. This does a similar thing as compl
2. Complis subtraction and then throw away the answer
3. Testl is “bitwise &” and then throw away the answer
4. For example: if a & b return a, otherwise return b
f. F43
i. Testl %eax, %eax
g. F44
i. We have two arguments, but what are the types of those arguments?
ii. Sure thatedx is a pointer
1. Because inside parenthesis
2. Solets say the two arguments are p and b
3. Ifpisnotnull, then return *p
a. Otherwise return b
b. Compiler has preloaded the eax register
c. Ifitis 0 then return immediately
d. Ifthe p argumentis non zero, fall through and dereference that
argument and put it into the register
e. So the function is
Unsigned f(unsigned *p, unsigned b)
if(p)
return *p
else
return b.
a. F45

i. How do we know this is a loop?
1. One magic property-backwards jump—always had by loops
2. Atthe end of the .L3 block
3. Figure 2 (see above)
a. Basic block control flow graph
i. Basicblock is a sequence of instructions that are always
executed as a unit
ii. Starts at beginning and goes through the end
ii. Might have many ways to exit, might jump to another
function, but every route that enters the basic block
enters through the basic block

ii. What does this function do?
1. Returnsa+a+1/2
2. Moves argument
3. Increments the counter, and then adds the counter to the return?
4. Once the counter gets to the end value it exists
5. Repret
a. For amd processors, a little different from other processors
iii. Look for counter—it’s the register begin compared at the end of the loop
iv. Here, that comparison is edx
b. F46
i. Istherealoop?
1. Yes
i. Where is the loop?
1. Jne.L8
2. Loopis blocks from L8 to L3
ii. How many arguments are there here?
iv. Why are we putting some garbage onto the stack, and then carefully taking it
off the stack at the end of the function
v. Calling convention
1. Distinction between registers in x86 that every function is guaranteed
to put back to the original value, and other registers that a function
can use however it want
a. Sothere are ‘scratch’ registers the function can use, and
precious registers the function must restore
Scratch registers are called “CALLER-SAVED”
Restore on exit registers are called “CALLEE-SAVED”
4. If a function wants to use one of these registers, has to save it’s value
on entry and restore on exist
5. Iseax scratch or restore?
a. CALLER-SAVED
b. The other CALLER-SAVED registers are ecx and edx
6. In all of the examples so far a lot of eax ecx and edx
7. The compile is using those registers because it can use them for free
8. A function can make the assembly code shorter if it does not have to
save any info from the registers and then restore
9. Caller-saved
a. Espebp ebx esi edi
vi. What is returnedin this file? Eax
vii. What else is eax?
1. The loop variable that is changed every time it loops
2. Because increment every time after L3 and then to see
viii. Important point is that you can take this apart relatively easily and see what
you are doing

w N

c. F51
i. Loop with multiply
ii. Factorial function

d. Return to the hello kitty program with a secret malicious function
i. How do problems like this happen
i. Here we have a program, smash01.c
iii. What does this program do?
1. ‘gets’just reads lines, and for every line just does ++lines and then
prints the numbers of lines in standard input
iv. (Wcis a better line count program)
v. Butthere is a weird boom function that prints boom
vi. Let's figure out an input to this program that will cause it to print boom
vii. In order to figure out this input, we need to reason about exactly what is on
the stack
viii. How are buf and lines arranged?
ix. Lets try it out under gdp
X. Gb smash01
1. b main (set breakpoint)
2. display/10i $pc (display next ten assembly instructions)
3. r(run program)
4. Ignore instruction we don’t understand
a. Push %esi and push #ebx
i. Saving CALLEE-SAVED registers
ii. The functions we have been looking at earlier are so
small, it has optimized away this part
iii. Uses ebp instead of esp to refer to arguments
iv. Ebp used to refer to arguments in large and complex
functions
v. ebp often refers to arguments
5. p $ebp
a. Itiszero
b. So push ebp, setup ebp and push and save more variables, save
esi and save ebx
6. Now there is something weird to align the stack to 16 byte boundaries
7. And then add a lot of spaces
a. Sub $0x2010,%esp
8. So the first argument has 8 off of ebp (one of the reasons we use ebp it
that is makes offsets smaller)
xi. In the pset, probably will not use p a lot
a. No debugging info

2. P &buf[0]
a. 0xbffd490
3. pSesp

a. oxbffd480

4. Base pointer p $ebp
a. 0xbffff498

5. The gets function doesn’t know how big the buffer is
a. Justreads as many characters as there are

@ ~oa

So in particular, if we give this function enough characters and
no new line, will just keep on writing over anything

If overwrite the return address, then it will jump to whatever
address we put in that value

So we just subtract ret address value from other value

So can put address of bomb function, which is 0x8048502

So let’s try to do that

Now the bomb function executes

