
Lecture 9 Scribe Notes (10/2/12)

Control and Calling Convention

Announcements:

● Tech-Talk with GitHub this upcoming Thursday. All are welcomed - info to be posted on
the web page.

● Assignment 2, Binary Bomb posted.

Control
-Addressing modes:

○ 4(%esp) in "C notation" corresponds to ((char *)%esp + 4)
○ Result treated as (unsigned *)

-In x86, return values are stored in the %eax register:
-Assembly code example:

movl (%esp) , %eax
addl 4(%esp), %eax
ret

%eax holds the return value.
%eax = %eax + 4(%esp)

Files: F13.s and F14.s, F15.s (available from the repo).
F15.s: function f takes a...h as arguments.

Calling Convention
● Agreements on how functions are represented in assembly
● Regardless of compiler, function should be represented the same way
● Sets up standards that enable interoperability

-Arguments are placed on the stack rather than on the registers.

f() <- Caller :
● Sets up the stack with arguments
● Saves its own local variables
● Jumps to callees first instruction (the entry point)
● Removes args from the stack once callee done.

g() <- Callee :
● Reads args and calculate,
● Puts the return value in %eax

-Since the caller removes the args from the stack, the callee doesn’t have to know the precise
number of args.

subl $12, %esp → move %esp 12 bytes back
call g
addl $12, %esp → move %esp 12 bytes back to the starting place.
^The above sets up the stack frame with args by subtracting 12 from stack pointer, gives control
to g, and then moves the stack frame back after g is finished executing.

-Stack pointer remains the same throughout the function and only changes when another
function is called.

F18.s:
subl $28, %esp → moves stack pointer 28 bytes back. “$” signifies a constant value.
movl $.LC0, (%esp) → stores the stack’s args at %esp before calling puts
call puts

-Return Address - address of instruction after the call
-Running f19 in gdb to figure out what happens in the call instruction:
gdb f19
b f
r
x/3i $pc
info reg → shows info on the registers
x/w $esp → print out 1 word (4 bytes in 32-bit OS) of %esp
si → step one instruction forward in the program’s execution

call instruction pushes onto the stack the return address
ret instruction pops the address of the next instruction to execute off the stack

-Code, as well as globals, have static storage duration.

f20.s:
jmp g

The function f does nothing after g returns. Also f has no args and no local variables.
Observing the -O2 flag, which indicates a medium level of optimization, gcc just jumps to g,
because it is faster. There is no reason to act as if f exists at all.

Tail Call Optimization → callee’s return address utilized as the return address for the calling
function.

f25. s -- 2 args: d and a
then d = d-a
then d = d >> 1
a = a+d
so: a + (d - a) >> 1

http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Tail_call

movl
movl
subl
shrl → shifting right
-Shift right without args shifts register to the right by 1.
-Compiler optimizes divisions through the use of right shift - right shift is way faster than a divide
operation.
- Right shift by a number is same as dividing by 2 raised to that number. i.e

d >> 1 == d /(2^1).
- Calling convention maintains the stack as a 16 byte multiple for alignment.

An infinite number of functions can be expressed as the same assembly, and vice versa
For example,

f(uint a, uint b)
f(signed a, signed b)
f(struct pair) -- int a, int b;
f(long long) add 2 halves (long) x + (x >> 32)
f(struct pair) where struct pair has int array[2];

all produce the same assembly when compiled.

leal → load effective address. Usually appears in complicated code. Calculates address
without dereferencing.
For example:
leal (%edx, %eax, 8), %eax → simply means %eax = %edx + %eax*8

