
Lecture 8 Notes
Problem Set 1 and Announcements

● Discussion of progress on pset1--cumulative distribution graph
● pset is harder than anticipated--so 3 bonus late days (now 6 total for the semester)
● *wild applause*
● emails will be sent out w/info on git repos/submitting tonight
● How compare.pl works
● no need to denote final commit--but if you turn in late, let staff know.
● Test 26:

○ uses memcpy to copy allocated regions and metadata (1)
○ and uses memcpy to do the reverse copy (2)
○ and tries what should be an invalid free (3)
○ solution: check if pointers to b from adjacent links are valid

x86 Assembly code: how code is represented in memory

● focus on reading assembly code (nobody needs to do a ton of programming in
assembly, but it’s good to be able to understand it.)

● x86 originally designed in the 1970s with 16-bit address spaces
● Alpha: extremely clean computer architecture--with 64 bit instructions
● size of instruction in x86: anywhere from 1 byte to 15 bytes
● example programs--Eddie has compiled them with gcc -o1 -s
● -o1 means slightly optimized, -s means to output assembly code

● Assembly contains data and metadata

○ data: instructions and constants
○ metadata: debugging info and other metadata; indicated by a line that starts with

a period
Example f00

rep
ret

● f is a label (NOT CODE)

● rep and ret are instructions
● rep not necessary--see textbook
● ret means return from function
● f is a void function (can’t see any return values) that takes no arguments

Example f01

movl $0, %eax
ret

● this puts the value 0 in the eax register
● so 0 is returned, since eax register contains the return value

What is a register?

● the CPU can only directly interact with registers, not the rest of memory
● compiler maps variables onto registers
● x86 does arithmetic on registers, then moves results back into memory

● x86 general registers:
● %eax, %ebx, %ecx, %edx, %esi, %edi, %ebp, %esp, %eip
● %eip stores the address of executing instruction
● CPU is like a Turing machine, with %eip storing the current state
● naming of registers: x is for extended...and e is for extra extended (to eventually be 32

bits)
Example f02

xorl %eax, %eax
ret

General form of x86 instructions
● operator source, destination
● $ indicates a constant
● each instruction has an operator, a source, and a combined source/destination

● in C, the program just consists of return 0;
● but the xorl command is shorter than a movl to move 0 to %eax

BREAK
● note that any function that just returns zero can have return types of int, char, unsigned

char, etc. (or if it returns NULL, char *, int *, etc.), but still corresponds to same assembly
code.

● so the return type is lost--the processor doesn’t know about types, just knows how to
treat numbers in different ways.

● so we lose performance info when moving back from assembly to C

Example f03

movl a, %eax
subl b, %eax
ret

● subtracts b from a
● here, a and b are globals
● can’t be heap addresses, since those are not known until runtime
● and can’t be locals, since functions could be called in multiple locations on the stack

Variables:
● $ indicates constant (ex. $0)
● names (ex. a, b) are references to globals
● and % indicates registers (e.g. %eax)

Example f04

movl a, %eax
addl b, %eax
ret

● adds b to a
● (unsigned and signed ints don’t make a difference with addition, so the assembly

instructions are exactly the same)
● no such thing as declaring variables in assembly (except for globals)

Example f05

movl x, %eax
movl (%eax), %eax
ret

● indirect addressing
● in assembly, dereference an address by using () → so (%eax) dereferences %eax

extern int x;
int f(void) {

return *x;
}

Example f06

movl x, %eax
movl (%eax), %eax
ret

● the C source uses x as an array and returns x[0]...which is the same address as x
● So the assembly is the same, because the address is the same.

extern int x[];
int f(void) {

return x[0];
}

Example f07

movzbl x, %eax
ret

● in movzbl, z = zero, b = bytes
● l generally means 32 bits
● so movzbl means: move a byte with zero extension into 32-bit (“l”) register; last byte of

register is that byte, all others are zero
● (zero extension means to put zeroes into the remaining unused bytes of the register)
● so the C source contains an unsigned char x, casted to an int and returned
● if we make it a signed char, the assembly has movsbl instead of movzbl:

movsbl x, %eax
ret

● this means to move the byte and preserve sign by extending other bytes appropriately.

Example f10

movl x , %eax
movzbl (%eax), %eax
ret

● returns an unsigned char x, dereferenced.

extern unsigned char *x
int f() {

return *x;
}

● if you use short instead of unsigned char, need movzwl
● where w=word (16-bit)
● also q = quad word (64-bit)

Example f11

movl x , %eax
movzbl 1(%eax), %eax
ret

● 1(%eax) is the dereference of %eax + 1 → *(%eax + 1)
● so it corresponds to returning x[1]

extern unsigned char *x
int f() {

return x[1];
}

Example f12

movl 4(%esp) , %eax
ret

● %esp is on the stack (s indicates stack)
● it’s the identity function
● that’s all folks

unsigned f(unsigned i) {

return i;
}

Instruction
general pattern:
OP SRC DST
SRC ← SRC OP DST
(like += operators in C)

What it does

$[stuff] stuff is a constant value

%[stuff] stuff is an address

stuff stuff is a reference to a global variable

(%stuff) dereference (%stuff) to get *stuff

N(%stuff) dereference (%stuff + N) = *(%stuff +N), where N = 1,2,3...

rep not really necessary, spaceholder that makes makes function
have >1 byte

ret return from function

movl [A], [B] moves [A] into [B]

xorl XOR

subl [A], [B] [B] - [A]

addl [A], [B] [A]+[B]

movzbl [A], [B] z=0, b= byte, l = 32bits
move byte w/ zero extension into a 32bit register

%eax
|0|0|0|x|

movsbl [A], [B] like movzbl, except s = sign extension, so will fill other bits with
top byte of [A]

movzwl [A],[B] w = 2 bytes/16 bits

Symbol/Register What it does

%eax register that holds return value of function

%ebx, ecx, edx,
esi, edi, ebp, esp

general purpose registers commonly seen in code
x - symbolizes extended register
e - 32bit version of register
s - stack

%eip address of currently executing instruction (the current state of
the “turing machine” x86 processor)

