CS 61: Systems Programming and Machine Organization

Topic: Automatic and semi-automatic memory management Lecture #8
Scribes: Albert Wu, Ben Shryock, Vladimir Bok 09/20/2012

0.1 Dictionary Example

Given n > 1 dictionary files and m > 1 words, for each word, report in which dictionary it is.

Implementation:

struct dict_word {
char* word;
charx file;

int line;
1 2 3 1
elbow knee sphincter sameer
a a a b

The 1lines are allocated contiguously in memory. The words and the files are not, but
the letters within the word and the letters within the file are (Note: this is why in the first
lecture, the linked list implementation, which was non-contiguously allocated, was much
slower than the array implementation, which was contiguously allocated).

dictionary with no space

X 0 0

null pointer 0 size 0 capacity
A way to create an enlargeable data structure (like a dictionary) is to start by dynam-

ically allocating a certain amount of space. When we exceed capacity, double the size by
dynamically allocating more.

if we add ‘a’

0 64
/

a|al 772

0.2 Bug

”

Consider a dictionary with m = 10 words: ”one,” ”"two,” ... ”nine.” Run the function
dictionary_lookup, which looks through all the words in the dictionary and compares
each word with the word we are looking for. However, something is wrong: when we run
the program to look for ”zero”, "one”, ”two”, etc., the output is not correct. It reports that
”nine” is on line 1. When we print out the word pointers, they all point to the same area
of the stack since we assign the word pointer to a local variable "buf’. So, since "nine” is

the last value of this local variable, all of the word pointers are at that point of the stack.

0.3 Smashing the Stack

A stack buffer overflow (also known as stack smashing) occurs when a program writes to a
memory address on the program’s call stack outside of the intended data structure; usually
a fixed length buffer (definition from Wikipedia, 2012).

0.4 Memory Leaks

Memory leaks are when we allocate memory without freeing it. C has explicit dynamic
memory allocation, i.e. user calls malloc() and free(). Other languages, such as Java,
Lisp, Perl, or Ruby have implicit dynamic memory allocation with garbage collection.

0.5 Garbage Collection

In computer science, garbage collection (GC) is a form of automatic memory management.
The garbage collector, or just collector, attempts to reclaim garbage, or memory occupied
by objects that are no longer in use by the program. (definition from Wikipedia, 2012).
Given a set of allocations A and one or more root pointers R C A, find the smallest set A’
with R C A’ C A so that all pointers in A’ point within A.

root pointer A a' is whole set

N
N

il

Garbage to collect!

e

root pointer

\

N

Writing a garbage collector in C (need a set of roots, being able to chase pointers). First,
we need to find roots for stack (bottom is the address of stack in main). Second, create a
find function. There is a ptr at the beginning of memory at the beginning of a block of size
sz. Pointers look like integers except they are in special ranges when pointing to the heap
or the stack. When we get to a set of 4 bytes, we check the pointer.

SZ

ptr heap pointer

a b c d Ix01 | Ix00 | Ix00 | Ix00 | 0x9c | Ox7a |Ox|3 |0x08

check each set of 4 bytes until something looks like a pointer

0.6 Tip For Assignment 1

Track memory allocations by defining a struct memregion that stores the pointer and size
of the allocated region.

