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Unsigned Computer Arithmetic II
Consider the following:
 

  
We would like to find the value of the right-hand side of this equation. We know that
 

 
Before forming a hypothesis, we work with small examples and look for patterns.
 

  
We now have enough information to form a reasonable hypothesis:
 

 
Let’s test our hypothesis with a few more examples, to see if it holds.
 

  
As we can now tell from the above, 

  
Let’s try a new, revised hypothesis: 
 

“When  is even, the answer is , and when  is odd, the answer is 1.”
  
To test this, let’s try giving  an even value:
 



 
Unfortunately, this disproves our revised hypothesis.
  
So what does  really equal? It returns the least significant 1 bit of ’s binary 
representation (least significant meaning smallest, or the one furthest to the right).
  
Here’s the proof:

 
Assume . Say we have 
 

, where there are  zeroes
 
Then,

 

, where there are  ones
 
Finally, 
 

, where there are  zeroes
 

As can be seen, adding the one causes a sort of “ripple effect” through the  ones, turning 
them into zeroes and causing the one to “bubble” up.
 
If we now take , the  cancels with ~  to make all zeroes. Anding 
zeroes and zeroes make more zeroes, leaving only the rightmost one. 
 
 
Multiplication and Division
Consider the following:
 

  
This is because  is represented as . After shifting  to the left, we are 
left with  represented as , where there are  zeroes. More precisely:
  

 
 
Similarly, consider this:



 

 
Shifts are faster than their regular mathematical counterparts when it comes to division 
and multiplication, owing primarily to the fact that each bit is affected by one single bit as 
opposed to each bit being affected by a different bit.
 
Also, the following use of & is faster than modulo:
 

  
 
Signed Arithmetic
Due to Two’s complement, signed addition and unsigned addition produce the same bit 
pattern. The same is true for signed and unsigned subtraction, and also for signed and 
unsigned multiplication (since multiplication amounts to nothing more than repeated 
addition). However, signed and unsigned division do not return the same bit patterns. For 
example:
 

 
 and  have the same bit representations, but they return answers that do not share 

the same bit pattern.
 
 
C’s Binary Logical Operators
C’s binary logical operators are: !, &&, ||, == !=, <, >, <=, and >=.
 
N.B. Logical operators operate on truth values and only return 1 or 0, where 1 is true and 0 
is false. For example, !!x and x != 0 are equivalent (this is as trick for casting to bool).
 
  
Data Representation
Memory can be thought of as an enormous array of unsigned char. On a 32-bit machine, 
the largest address possible is .
 
The range of values for an object of type signed short int is -32768 to 32767. An 
unsigned short int can represent values from 0 to 65535. A short int is 16-bit object 
(2 bytes).
 
Here’s an example of how an object is stored in memory. Pick a short int, say 32767 == 
0x7FFF. Let’s say we’re storing this in the address 0x800000. On the internet, this address 



holds 0x7F and the next address holds 0xFF, meaning that more significant bytes are 
transferred and stored first. 
 
This style of ordering the individually addressable sub-components (bytes) within the 
representation of the larger data item (the short int) is called big endian.

 
On the other hand, in most PCs (in particular those powered by Intel chips, i.e., almost all) 
0xFF goes in the lower numbered address and 0x7F goes in the next one, meaning the least 
significant byte is stored first - this ordering style is referred to as little endian.

 
  
Let’s briefly review the size of a few C data types on a 32-bit machine. An int is 4 bytes, a 
long long is 8 bytes, and a char * is 4 bytes (8 bytes on a 64-bit machine).
 
Now let’s take a look at arrays. As stated previously, memory can be thought of as an 
enormous array of unsigned char. What is the best way to represent an array of ints?
 
To store 10 ints, allocate a contiguous 40-byte chunk of memory. Why 40 bytes? The 
amount of memory you must allocate is given by multiplying the number of objects you 
want to store by the byte size of the object. In this case, an int is 4 bytes long, and you 
want to store 10 of them, hence you need 40 bytes. Let’s say the chunk of memory you 
have allocated starts at 0x70000; it will end at 0x70028. Such a contiguously allocated 
subset of memory is referred to as a homogenous collection. An array is an example of a 
homogenous collection.
  

N.B. Given an array  of type , where the address of the array is , the address of item 
 is .



  
Heterogenous collections are those where every element is not the same (and hence the 
size of every element is not the same). A good example of a heterogenous collection C is a 
struct:
  
struct foo {

    int a;

    char b;

    unsigned char c;

    int *p;

}

  
Like the array, the struct is also laid out in a contiguous block. However, the objects 
stored within this block are not of uniform size, as they were in the array.
  
We can inspect the locations of each of these items in memory:
 
int main () {

    foo p;

    printf (“%p %p %p\n”, &p, &p.a, &p.b, &p.c, &p.p);

}

 

The struct takes up 12 bytes in memory. The difference between the addresses of p and 
p.a is 0 bytes (they’re at the same location), while the difference between p.a and p.b is 
4 bytes, the difference between p.b and p.c is 1 byte, and the difference between p.c 
and p.p is 3 bytes. 
 
Each type has an alignment number that should evenly divide its address. The alignment 
number of the largest object is always used. In this example, the largest objects are the int 
and the int * (each of size 4 bytes), and so the alignment number is used is 4. Padding 
is added at the end of the struct to make its size a multiple of 4, since as we have just 
discussed, the struct needs to be aligned on a 4-byte boundary. This use of padding 
explains the 3 byte difference between p.c and p.p (2 bytes of padding are added 
between them).
  
If we eliminate the int * from the struct, we might reasonably expect the size to be 6 
bytes, but in fact the size comes to 8 bytes. This is again due to the fact that the struct 
must be aligned on a 4-byte boundary, since it still contains an int.
  
Here is an example of our third type of collection, the overlapping collection:
 
union foo{

    int a;

    char b;

    unsigned char c;



    int *p;

}

 
The type union can be viewed as a variable type that can contain many different variables 
(like a struct), but only actually holds one of them at a time (not like a struct). The size 
of a union is equal to the size of its largest data member. In other words, the C compiler 
allocates just enough space for the largest member. This is because only one member can 
be used at a time, so the size of the largest is the most that will be needed. If we print out 
the addresses of the elements of this union, each element has the same memory address; 
the union is aligned according to the alignment number of the largest element.
  
 
Finally, we will inspect the memory usage of the following recursive function used to 
compute :
  
int factorial(int n){

    if (n==0)

        return 1;

    else

        return factorial(n-1)*n;

}

  
Each time the factorial function is called, a new argument n is generated. Each n has 
its own address. Where in memory are these n’s stored? We can answer this question by 
printing the address of each n. By doing this, we observe that each subsequent n is located 
at a lower address than the previous. Also note that each time the program is run anew, 
new addresses are used for all n’s; this is for security purposes.
  
How are functions laid out in memory? As we saw, main’s local variables are stored 
somewhere to the right of center (near, but below, the address 0xC0000000). Function calls 
move to progressively lower memory addresses, and as function calls return they move 
back up, reusing the space. Code itself is stored in markedly lower memory addresses, 
with global variables even lower. The region located in higher addresses, containing 
local variables and function calls, is called the stack. The region located in lower in lower 
addresses, between the stack and the code, is called the heap, and is used for dynamic 
memory allocation.
 



 


