CS 61 Lecture 4

09/13/2012

More on Computer Arithmetic

- What is $x \&-x$?
- Let's try a few values:
$x=0 \rightarrow 0000_{2} \& 0000_{2}=0000_{2}=0 \rightarrow$ Maybe $x \&-x=0$?
$x=1 \rightarrow 0001_{2} \& 1111_{2}=0001_{2}=1 \rightarrow$ Maybe $x \&-x=x$?
$x=2 \rightarrow 0010_{2} \& 1110_{2}=0010_{2}=2 \rightarrow$ Looks good so far...
$x=5 \rightarrow 0101_{2} \& 1011_{2}=0001_{2}=1 \rightarrow$ Nope!
$x=8 \rightarrow 1000_{2} \& 1000_{2}=1000_{2}=8 \rightarrow$ Maybe $x \&-x=x$ when x is even, but 1 when x is odd?
$x=6 \rightarrow 0110_{2} \& 1010_{2}=0010_{2}=2 \rightarrow$ Nope again!
- So what's the real pattern?
* Note that, except when $x=0$, the result always has exactly one "on" bit.
- Moreover, that bit is always the rightmost "on" bit in x
* There's our answer: $x \&-x$ returns the least significant 1 bit of x
- Proof: suppose that x has the form $x=\alpha 100 \ldots 0$, where α is an arbitrary string of 1 s and 0 s , and the string of 0 s at the end of x has length $k \geq 0$.
* The underlined 1 is x 's least significant 1 bit; there are no 1 s to the right of it.
* If we flip all the bits in x, we get: $\sim x=\sim \sim \alpha 11 \ldots 1$
* To get $-x$ we calculate $\sim x+1$; but since $\sim x$ ends in a string of 1 s , adding 1 causes a ripple effect which flips all the bits up to the underlined bit:
$-x=\sim x+1=(\sim \alpha \underline{0} 11 \ldots 1)+1=\sim \alpha 100 \ldots 0$
- The ripple carry ends at the underlined bit because $0+1=1$ with no carry, so the bits in $\sim \alpha$ are not affected.
* Consider now what happens when we perform the operation $x \&-x$:
- On the right end, both x and $-x$ have a string of k ss; $00 \ldots 0 \& 00 \ldots 0=00 \ldots 0$
- On the left end, $\alpha \& \sim \alpha$ must be 0 because the two strings have opposite bits.
- At the underlined bit, both x and $-x$ have a one; this bit, the least significant 1 bit of x, is the only bit in $x \&-x$ which evaluates to 1 .
$-x \&-x=$ the least significant 1 bit of x; if x has $k 0$ s on the end, this value is 2^{k}
- Multiplication \& Division
$-x \ll i=x \cdot 2^{i}$

$$
\begin{aligned}
& \text { * Proof: suppose we have } \text { (} x \text { is a string of bits } x_{w-1} x_{w-2} \ldots x_{1} x_{0} \text {) } \\
& \text { Then } y=x \ll i=\begin{array}{ccccccc}
& & & & & < & i 0 \mathrm{~s}
\end{array}> \\
& \text { So, } y=\sum_{k=0}^{w-1} 2^{k} y_{k}=\sum_{k=i}^{w-1} 2^{k} x_{k-i}=\sum_{k=0}^{w-1-i} 2^{i} \cdot 2^{k} x_{k}=2^{i} \sum 2^{k} x_{k}=2^{i} x
\end{aligned}
$$

- Similarly, $x \gg i=\left\lfloor x / 2^{i}\right\rfloor=x / 2^{i}$ (in integer arithmetic, division always includes flooring)
* Most machines will calculate $x \gg i$ much faster than $x / 2^{i}$
- Finally, $x \&\left(2^{i}-1\right)=x \% 2^{i}$
* Again, most machines will calculate the former expression more quickly than the latter
* Good compilers will change multiplications and divisions into \ll, $>$, and \& whenever possible
- Signed Arithmetic
- Addition, subtraction, and multiplication each use the same bit patterns for signed arithmetic and unsigned arithmetic
* For example: $1111_{2}-0001_{2}=1110_{2}$, whether 1111_{2} is being used to represent -1 or 15 .
- Division does not use the same bit patterns for signed and unsigned arithmetic
* $1111_{2} / 0010_{2}=0111_{2}$ in unsigned arithmetic $(15 / 2=7)$ $1111_{2} / 0010_{2}=0000_{2}$ in signed arithmetic $(-1 / 2=0)$
* This is one of many reasons why division and modulus are the hardest (slowest) arithmetic operations for a computer

Many processors don't even include a division operation; higher-level software uses simpler operations to simulate division

- Logical Operations
- Many of the bitwise operations have analogous logical operations
- Logical operations operate on truth values; they always evaluate to either 1 or 0
- What is !! x ?
* It's not x - you're thinking of $\sim \sim x=x$
* !! $x=0$ if $x=0,1$ otherwise; in other words, $!!x$ is equivalent to $(x!=0)$

Data Representation

- Big-Endian vs. Little-Endian
- Given a value that requires two bytes - say $32767=0 \mathrm{x} 7 \mathrm{FFF}$, the largest signed short - and an address in memory A, how should we store that value?
* Turns out to be a bit of a religious war
- Big-Endian: Store the most significant bits in A and lesser bits in later addresses

$0 x 00000000$	A	$\mathrm{A}+1$	$2^{32}-1$
	$0 \times 7 \mathrm{~F}$	$0 \times F F$	

* This is how data is arranged when it is being transmitted across the internet
- Little-Endian: Store the least significant bits in A and greater bits in later addresses

$0 x 00000000$	A	$\mathrm{A}+1$	$2^{32}-1$
	$0 x F F$	$0 x 7 \mathrm{~F}$	

[^0]- Arrays
- Memory is like an enormous array of unsigned char
* In C, arrays are represented as contiguously-allocated subsets of memory
- Arrays are homogeneous collections of data; everything in the array is of the same type
- Given an array x [] of type T, where the address of the array is A, the address of item i is:

$$
\& x[i]=A+i \cdot \operatorname{sizeof}(T)
$$

- Structs
- Structs are heterogeneous collections of data; they can store multiple different types
- In C, structs are also stored as a contiguous block, but the
- An example: struct foo \{
int a; $\quad \leftarrow$ size 4 bytes
char $\mathrm{b} ; \quad \leftarrow$ size 1 bytes
unsigned char c; $\quad \leftarrow$ size 1 bytes
int $* \mathrm{p} ; \quad \leftarrow$ size 4 bytes
\}
- So the total size should be $4+1+1+4=10$ bytes, right?
* But if we print out the addresses of some_foo.c and some_foo.p, we see that there is a gap of 3 bytes instead of 1 ; there are two empty bytes inserted between them. These bytes are padding.
* Padding exists to maintain alignment: the processor is better at loading values from addresses that are a multiple of that value's type size.
- So it is faster to load an int from an address that is a multiple of 4, and a short from an address that is a multiple of 2
* The actual size of foo is $4+1+1+2$ (so some_foo.p is properly aligned) $+4=12$ bytes
- What if we remove p from the definition of foo? No need to align so the size should be 6 , right?
* But the padding is still there! The size of foo is 8 .
* Why? The compiler includes the padding just in case we have multiple items of type foo stored in a row. Because the first element of foo has alignment 4, the padding should stay.
- If we eliminate a as well, then the remaining size is 2 . With only chars (alignment 1) in foo, there is no need for padding.
- Unions
- Unions are overlapping collections of data
- An example:

```
        union foo {
            int a;
            char b;
            unsigned char c;
            int *p;
        }
```

- Essentially a way to tell the compiler "I know that I'm using this data in multiple ways"
- The size and alignment of the union are the same as the size and alignment of the largest element
- All elements in the union have the same address
- Function Layout
- Consider the factorial function, which recursively calls itself:
* Each call to the function creates a new, local version of the variable n
* If we print out the address of n in each call to the function, we see that the address decreases each time
- The amount of decrease appears to be constant
* What if we alter the function so that factorial(2) calls factorial(1) then, after the latter has returned, calls factorial(1) again?
- factorial(1)'s version of n is stored in the same address both times; in fact, the local variables of any function called by factorial(2) would be stored in that same address
- All of the above is a result of the way functions are laid out in memory:

| 0×00000000 | \leftarrow | $2^{32}-1$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| global variables
 $\& ~ c o d e ~$ | | | main()'s
 local variables | |

* Local variables of functions are stored in the stack:
- Those variables belonging to main () are stored at some high value in memory.
- Those variables belonging to functions called by main() are stored in slightly lower addresses; those belonging to those functions' called functions in still lower addresses; etc...
* Global variables and the code itself are stored at very low values in memory
* Everything in between is the heap

[^0]: * This is how data is stored in most computers

