
CS 61 Lecture 4

09/13/2012

More on Computer Arithmetic
• What is x & -x ?

– Let’s try a few values:
x = 0→ 00002 & 00002 = 00002 = 0→ Maybe x & -x = 0 ?
x = 1→ 00012 & 11112 = 00012 = 1→ Maybe x & -x = x ?
x = 2→ 00102 & 11102 = 00102 = 2→ Looks good so far...
x = 5→ 01012 & 10112 = 00012 = 1→ Nope!
x = 8→ 10002 & 10002 = 10002 = 8→ Maybe x & -x = x when x is even, but 1 when x is odd?
x = 6→ 01102 & 10102 = 00102 = 2→ Nope again!

– So what’s the real pattern?
∗ Note that, except when x = 0, the result always has exactly one “on” bit.
· Moreover, that bit is always the rightmost “on” bit in x

∗ There’s our answer: x & -x returns the least significant 1 bit of x
– Proof: suppose that x has the form x = α 1 0 0 ... 0, where α is an arbitrary string of 1s and

0s, and the string of 0s at the end of x has length k ≥ 0.

∗ The underlined 1 is x’s least significant 1 bit; there are no 1s to the right of it.
∗ If we flip all the bits in x, we get: ∼ x = ∼ α 0 1 1 ... 1

∗ To get −x we calculate ∼ x+1; but since ∼ x ends in a string of 1s, adding 1 causes a ripple
effect which flips all the bits up to the underlined bit:
−x =∼ x+ 1 =

(
∼ α 0 1 1 ... 1

)
+ 1 = ∼ α 1 0 0 ... 0

· The ripple carry ends at the underlined bit because 0 + 1 = 1 with no carry, so the bits
in ∼ α are not affected.

∗ Consider now what happens when we perform the operation x & -x :
· On the right end, both x and −x have a string of k 0s; 00...0 & 00...0 = 00...0
· On the left end, α & ∼ α must be 0 because the two strings have opposite bits.
· At the underlined bit, both x and −x have a one; this bit, the least significant 1 bit of x,
is the only bit in x & -x which evaluates to 1.

– x & -x = the least significant 1 bit of x; if x has k 0s on the end, this value is 2k

• Multiplication & Division

– x� i = x · 2 i

∗ Proof: suppose we have x
xw−1 xw−2 ... x1 x0

(x is a string of bits xw−1xw−2... x1x0)

Then y = x� i =

< i 0s >
xw−1−i ... x1 x0 0 ... 0
yw−1 ... yi+1 yi yi−1 ... y0

So, y =
∑w−1

k=0 2kyk =
∑w−1

k=i 2kxk−i =
∑w−1−i

k=0 2i · 2kxk = 2i
∑

2kxk = 2ix

1

– Similarly, x� i = bx / 2 ic = x / 2 i (in integer arithmetic, division always includes flooring)

∗ Most machines will calculate x� i much faster than x / 2 i

– Finally, x & (2 i − 1) = x % 2 i

∗ Again, most machines will calculate the former expression more quickly than the latter
∗ Good compilers will change multiplications and divisions into�,�, and & whenever possible

• Signed Arithmetic

– Addition, subtraction, and multiplication each use the same bit patterns for signed arithmetic
and unsigned arithmetic

∗ For example: 11112 − 00012 = 11102, whether 11112 is being used to represent −1 or 15.

– Division does not use the same bit patterns for signed and unsigned arithmetic

∗ 11112/00102 = 01112 in unsigned arithmetic (15/2 = 7)
11112/00102 = 00002 in signed arithmetic (−1/2 = 0)

∗ This is one of many reasons why division and modulus are the hardest (slowest) arithmetic
operations for a computer
· Many processors don’t even include a division operation; higher-level software uses simpler
operations to simulate division

• Logical Operations

– Many of the bitwise operations have analogous logical operations

– Logical operations operate on truth values; they always evaluate to either 1 or 0

– What is !!x ?

∗ It’s not x - you’re thinking of ∼∼ x = x

∗ !!x = 0 if x = 0, 1 otherwise; in other words, !!x is equivalent to (x != 0)

Data Representation
• Big-Endian vs. Little-Endian

– Given a value that requires two bytes - say 32767=0x7FFF, the largest signed short - and an
address in memory A, how should we store that value?

∗ Turns out to be a bit of a religious war

– Big-Endian: Store the most significant bits in A and lesser bits in later addresses
0x00000000 A A+1 232 − 1

0x7F 0xFF

∗ This is how data is arranged when it is being transmitted across the internet

– Little-Endian: Store the least significant bits in A and greater bits in later addresses
0x00000000 A A+1 232 − 1

0xFF 0x7F

∗ This is how data is stored in most computers

2

• Arrays

– Memory is like an enormous array of unsigned char

∗ In C, arrays are represented as contiguously-allocated subsets of memory

– Arrays are homogeneous collections of data; everything in the array is of the same type
– Given an array x[] of type T , where the address of the array is A, the address of item i is:

&x[i] = A+ i·sizeof(T)

• Structs

– Structs are heterogeneous collections of data; they can store multiple different types
– In C, structs are also stored as a contiguous block, but the
– An example:

struct foo {

int a; ← size 4 bytes
char b; ← size 1 bytes
unsigned char c; ← size 1 bytes
int *p; ← size 4 bytes

}

– So the total size should be 4 + 1 + 1 + 4 = 10 bytes, right?

∗ But if we print out the addresses of some_foo.c and some_foo.p, we see that there is a gap
of 3 bytes instead of 1; there are two empty bytes inserted between them. These bytes are
padding.

∗ Padding exists to maintain alignment: the processor is better at loading values from ad-
dresses that are a multiple of that value’s type size.
· So it is faster to load an int from an address that is a multiple of 4, and a short from an
address that is a multiple of 2

∗ The actual size of foo is 4 + 1 + 1 + 2 (so some_foo.p is properly aligned)+ 4 = 12 bytes

– What if we remove p from the definition of foo? No need to align so the size should be 6, right?

∗ But the padding is still there! The size of foo is 8.
∗ Why? The compiler includes the padding just in case we have multiple items of type foo

stored in a row. Because the first element of foo has alignment 4, the padding should stay.

– If we eliminate a as well, then the remaining size is 2. With only chars (alignment 1) in foo, there
is no need for padding.

• Unions

– Unions are overlapping collections of data
– An example:

union foo {

int a;
char b;
unsigned char c;
int *p;

}

3

– Essentially a way to tell the compiler “I know that I’m using this data in multiple ways”

– The size and alignment of the union are the same as the size and alignment of the largest element

– All elements in the union have the same address

• Function Layout

– Consider the factorial function, which recursively calls itself:

∗ Each call to the function creates a new, local version of the variable n
∗ If we print out the address of n in each call to the function, we see that the address decreases

each time
· The amount of decrease appears to be constant

∗ What if we alter the function so that factorial(2) calls factorial(1) then, after the latter has
returned, calls factorial(1) again?
· factorial(1)’s version of n is stored in the same address both times; in fact, the local
variables of any function called by factorial(2) would be stored in that same address

– All of the above is a result of the way functions are laid out in memory:

0x00000000 ← ← ← 232 − 1

global variables
& code THE HEAP main()’s

local variables

∗ Local variables of functions are stored in the stack:
· Those variables belonging to main() are stored at some high value in memory.
· Those variables belonging to functions called by main() are stored in slightly lower ad-
dresses; those belonging to those functions’ called functions in still lower addresses; etc...

∗ Global variables and the code itself are stored at very low values in memory
∗ Everything in between is the heap

4

