CS 61 Lecture 4

09/13/2012

More on Computer Arithmetic

- What is x & -x?
 - Let's try a few values:
 - $x = 0 \rightarrow 0000_2 \& 0000_2 = 0000_2 = 0 \rightarrow \text{Maybe } x \& -x = 0 ?$
 - $x = 1 \rightarrow 0001_2 \& 1111_2 = 0001_2 = 1 \rightarrow Maybe \ x \& -x = x ?$
 - $x = 2 \rightarrow 0010_2 \& 1110_2 = 0010_2 = 2 \rightarrow \text{Looks good so far...}$
 - $x = 5 \rightarrow 0101_2 \& 1011_2 = 0001_2 = 1 \rightarrow \text{Nope!}$
 - $x = 8 \rightarrow 1000_2 \& 1000_2 = 1000_2 = 8 \rightarrow \text{Maybe } x \& -x = x \text{ when } x \text{ is even, but } 1 \text{ when } x \text{ is odd}?$
 - $x = 6 \rightarrow 0110_2 \& 1010_2 = 0010_2 = 2 \rightarrow \text{Nope again!}$
 - So what's the real pattern?
 - * Note that, except when x = 0, the result always has exactly one "on" bit.
 - Moreover, that bit is always the rightmost "on" bit in x
 - * There's our answer: x & -x returns the least significant 1 bit of x
 - Proof: suppose that x has the form $x = \boxed{\alpha} \underline{1} 0 0 \dots 0$, where $\boxed{\alpha}$ is an arbitrary string of 1s and 0s, and the string of 0s at the end of x has length $k \ge 0$.
 - * The underlined 1 is x's least significant 1 bit; there are no 1s to the right of it.
 - * If we flip all the bits in x, we get: $\sim x = | \sim \alpha | \underline{0} 1 1 \dots 1$
 - * To get -x we calculate $\sim x + 1$; but since $\sim x$ ends in a string of 1s, adding 1 causes a ripple effect which flips all the bits up to the underlined bit:
 - $-x = \sim x + 1 = \left(\left\lfloor \sim \alpha \ \underline{0} \ \underline{1} \ \underline{1} \dots \underline{1} \right) + 1 = \left\lceil \sim \alpha \ \underline{1} \ \underline{0} \ 0 \dots 0 \right.$
 - · The ripple carry ends at the underlined bit because 0 + 1 = 1 with no carry, so the bits in $\boxed{\ \sim \alpha}$ are not affected.
 - * Consider now what happens when we perform the operation x & -x:
 - · On the right end, both x and -x have a string of k 0s; 00...0 & 00...0 = 00...0
 - · On the left end, $|\alpha| \& |\alpha|$ must be 0 because the two strings have opposite bits.
 - At the underlined bit, both x and -x have a one; this bit, the least significant 1 bit of x, is the only bit in x & -x which evaluates to 1.
 - -x & -x = the least significant 1 bit of x; if x has k 0s on the end, this value is 2^k
- Multiplication & Division
 - $-x \ll i = x \cdot 2^{i}$
 - * Proof: suppose we have x x_{w-1} x_{w-2} \dots x_1 x_0 $(x \text{ is a string of bits } x_{w-1}x_{w-2}\dots x_1x_0)$

 $\begin{array}{rl} & < & i \ 0 \mathrm{s} & > \\ \text{Then } y = x \ll i = \fbox{x_{w-1-i} & \dots & x_1 & x_0 & 0$ & \dots$ & 0$} \\ & & & & \\ y_{w-1}$ & \dots & y_{i+1} & y_i & y_{i-1} & \dots$ & y_0 \\ \text{So, } y = \sum_{k=0}^{w-1} 2^k y_k = \sum_{k=i}^{w-1} 2^k x_{k-i} = \sum_{k=0}^{w-1-i} 2^i \cdot 2^k x_k = 2^i \sum 2^k x_k = 2^i x \end{array}$

- Similarly, $x \gg i = \lfloor x / 2^i \rfloor = x / 2^i$ (in integer arithmetic, division always includes flooring) ∗ Most machines will calculate $x \gg i$ much faster than $x / 2^i$
- Finally, $x \& (2^{i} 1) = x \% 2^{i}$
 - * Again, most machines will calculate the former expression more quickly than the latter
 - * Good compilers will change multiplications and divisions into \ll , \gg , and & whenever possible
- Signed Arithmetic
 - Addition, subtraction, and multiplication each use the same bit patterns for signed arithmetic and unsigned arithmetic
 - * For example: $1111_2 0001_2 = 1110_2$, whether 1111_2 is being used to represent -1 or 15.
 - Division does not use the same bit patterns for signed and unsigned arithmetic
 - * $1111_2/0010_2 = 0111_2$ in unsigned arithmetic (15/2 = 7)
 - $1111_2/0010_2 = 0000_2$ in signed arithmetic (-1/2 = 0)
 - * This is one of many reasons why division and modulus are the hardest (slowest) arithmetic operations for a computer
 - Many processors don't even include a division operation; higher-level software uses simpler operations to simulate division
- Logical Operations
 - Many of the bitwise operations have analogous logical operations
 - Logical operations operate on truth values; they always evaluate to either 1 or 0
 - What is !!x?
 - * It's not x you're thinking of $\sim \sim x = x$
 - * !!x = 0 if x = 0, 1 otherwise; in other words, !!x is equivalent to (x != 0)

Data Representation

- Big-Endian vs. Little-Endian
 - Given a value that requires two bytes say 32767=0x7FFF, the largest signed short and an address in memory A, how should we store that value?
 - * Turns out to be a bit of a religious war
 - Big-Endian: Store the most significant bits in A and lesser bits in later addresses

0x0000000	Α	$A{+}1$	$2^{32} - 1$
	0x7F	0xFF	

* This is how data is arranged when it is being transmitted across the internet

- Little-Endian: Store the least significant bits in A and greater bits in later addresses 0x00000000 A A+1 $2^{32} - 1$

0xFF	0x7F	

* This is how data is stored in most computers

- Arrays
 - Memory is like an enormous array of unsigned char
 - * In C, arrays are represented as contiguously-allocated subsets of memory
 - Arrays are **homogeneous collections** of data; everything in the array is of the same type
 - Given an array x[] of type T, where the address of the array is A, the address of item i is: $\&x[i] = A + i \cdot \operatorname{sizeof}(T)$

• Structs

- Structs are **heterogeneous collections** of data; they can store multiple different types
- In C, structs are also stored as a contiguous block, but the
- An example:

}

```
struct foo {
```

int a;	\leftarrow size 4 bytes
char b;	\leftarrow size 1 bytes
unsigned char c;	\leftarrow size 1 bytes
int *p;	\leftarrow size 4 bytes

- So the total size should be 4 + 1 + 1 + 4 = 10 bytes, right?
 - * But if we print out the addresses of some foo.c and some foo.p, we see that there is a gap of 3 bytes instead of 1; there are two empty bytes inserted between them. These bytes are padding.
 - * Padding exists to maintain alignment: the processor is better at loading values from addresses that are a multiple of that value's type size.
 - · So it is faster to load an int from an address that is a multiple of 4, and a short from an address that is a multiple of 2
 - * The actual size of foo is 4 + 1 + 1 + 2 (so some foo.p is properly aligned) + 4 = 12 bytes
- What if we remove p from the definition of foo? No need to align so the size should be 6, right?
 - * But the padding is still there! The size of foo is 8.
 - * Why? The compiler includes the padding just in case we have multiple items of type foo stored in a row. Because the first element of foo has alignment 4, the padding should stay.
- If we eliminate a swell, then the remaining size is 2. With only chars (alignment 1) in foo, there is no need for padding.

```
• Unions
```

}

- Unions are overlapping collections of data
- An example:

```
union foo {
int a:
 char b;
 unsigned char c;
int *p;
```

- Essentially a way to tell the compiler "I know that I'm using this data in multiple ways"
- The size and alignment of the union are the same as the size and alignment of the largest element
- All elements in the union have the same address
- Function Layout
 - Consider the factorial function, which recursively calls itself:
 - * Each call to the function creates a new, local version of the variable n
 - * If we print out the address of n in each call to the function, we see that the address **decreases** each time
 - \cdot The amount of decrease appears to be constant
 - * What if we alter the function so that factorial(2) calls factorial(1) then, after the latter has returned, calls factorial(1) again?
 - · factorial(1)'s version of n is stored in the same address both times; in fact, the local variables of *any* function called by factorial(2) would be stored in that same address
 - All of the above is a result of the way functions are laid out in memory:

0x0000000		$\leftarrow \leftarrow \leftarrow$			$2^{32} - 1$
global variables & code	THE HEAP			main()'s local variables	

- * Local variables of functions are stored in the **stack**:
 - Those variables belonging to main() are stored at some high value in memory.
 - Those variables belonging to functions called by main() are stored in slightly lower addresses; those belonging to those functions' called functions in still lower addresses; etc...
- * Global variables and the code itself are stored at very low values in memory
- * Everything in between is the **heap**