
CS61: SYSTEMS PROGRAMMING AND MACHINE ORGANIZATION

LECTURE 3

1. Announcements

• Sectioning
– Section times will be announced and the section tool will be open with the

link on the website.
– Sections will start next week.

• There will be office hours this week; times are on the calendar on the website.
• Assignment 0 is due this Friday.
• There will be a section on Git, the version control system, right after lecture in

MD G115 on Thursday. Git will be used starting in assignment 1.
– This section will be led by Rob Bowden, who volunteered his time!
– This section is not mandatory (and no future sections will be.) They are

recommend, though.
– The section on git is especially recommended if you’ve never used git before.

• In response to a question about showing work on Assignment 0: Showing a few
lines of work in the first question is useful; it’s better to know how to convert from
decimal to binary, even if it can be accomplished by a computer program. Even if
it’s possible to write a computer program to generate the work.
• Congrats to Nathaniel Hermann, who found an image file with assembly executable

code for the sum challenge! Way to go.

2. Unsigned Arithmetic

Our discussion of unsigned arithmetic will involve the following C types:

• unsigned short, whose maximum value is 216 − 1
• unsigned char, whose maximum value is 28 − 1
• unsigned int, whose maximum value is 232 − 1
• unsigned long, whose maximum value is 232 − 1 (See historical digression below.)
• unsigned long long, whose maximum value is 264 − 1

2.1. Historical Digression.

• The earliest digital computers sold had 18-bit, then 36-bit words.
• This makes sense, if we think about it in terms of approximations:

236 = 230 ·26 ≈ 109 ·64 > 1010 (the smallest even power of 20 that can fit 10-decimal
digits)

1



2 LECTURE 3

• Earliest digital calculators could manipulate 10-digit numbers, so early digital com-
puters needed to fit 10-digit numbers to match up
• Case-in-point: Unisys (a “dinosaur” computer company)

– From a technical specification: “The OS 2200 used 36 bits of every platform
word (8 bytes) to minimize the complexity of the Unisys design”

– Throws away a little less than half of every word in memory!

2.2. Concepts.
– One of the most important concepts of unsigned arithmetic is the following:

Unsigned arithmetic is regular, pencil-and-paper arithmetic mod-
ulo 2w, where w is the number of bits that a type can hold. This
is a very simple thing to remember, and it is always true by the
definition of the C abstract machine.

– What’s 3 + 4 going to evaluate to, assuming a word size (w) of 4?

– How about 4 + 6?

Note the carry.



CS61: SYSTEMS PROGRAMMING AND MACHINE ORGANIZATION 3

– What about subtraction? Remember that unsigned computer arithmetic is
the same as mathematical arithmetic modulo 2w.
∗ Using the laws of regular arithmetic, t a−b should be the same as a+−b.

That’s just a mathematical law.
∗ What does that say about −b? How do we represent it in unsigned

arithmetic?
· Describe it in words: it’s the number that, when added to b gives

0.
· −b = c s.t. b + c = 0
· b + c = 0mod2w

∗ What else is 0 mod 2w? 2w.
∗ This says that c = 2w − b. Doesn’t look like we’ve solved anything, but

this is mathematical subtraction, not unsigned, modulus subtraction,
since we have bounds on c.
∗ So what’s -1? 2w − 1. Note that, 2w − 1 + 1 = 2w = 0. That’s the

definition of −1: when we add 1 to it, we should get 0, and in computer
arithmetic, we do!

2.3. Fun.

• Strictly speaking, in math, if x > 0, then −x < x.
• However, what about computer math, for unsigned numbers? We know that −x is

representable. But they’re not in any specific relationship.
• Is there a time when −x == x for x! = 0? Yes, solve by finding an x so that

2x == 0. That can be 2w

2 , or 2w−1, another “interesting” number!

2.4. Operations on C Integers.

• Multiplication
• Division
• Modulus
• Addition
• Subtraction
• Bit shifting operators

– These operators are “crazy!”
– Order the following values:

∗ min(x, y)
∗ max(x,y)
∗ x & y
∗ x|y
∗ x
∗ y
∗ Answer: x|y >= max(x, y) ≥ x, y,>= min(x, y) >= x&y

– Idea: Let xi represent the bit of x in position i. Then, x (say 3) is expressible

as
∑2

i=0 2ixi = 0 · 22 + 1 · 21 + 1 · 20 = 3. Similarly, y (say 5) is expressible as



4 LECTURE 3∑2
i=0 2ixi = 1 · 22 + 0 · 21 + 1 · 20 = 5. The value at the bit position in the

“or” is at least than the value of either x or y. The same logic applies for the
others: for the x&y value, zero “consumes” 1, so we minimize specific to each
bit position, and that will result in something at most min(x, y).

• Comparison operators
• Logical operators

2.5. More Fun.

• What is (x|y) − (x&y)? Answer: (x∨y). One explanation: Take the bits that all
the bits that are lit up, and then take away the bits that are lit up in both places.
You have left only the bits in positions that are lit up in exactly one number.
• Scribe’s explanation: Imagine this in terms of probabilities: if you calculate the

probability of events x or y occurring, you’ve found the probability that x occurs, y
occurs, or x and y occurs. To find the probability that exactly one of these events
occurs, just subtract the intersection, x&y!
• When is x&(x− 1) == 0?

– 0 is a possiblity.
– All powers of 2 are possibilities. Let’s think about how a power of two is

represented in binary: 100000 · · · 0. Now, let’s think about how this power of
two minus 1 is represented in binary 011111 · · · 1. “And”ing these, we get 0!

• ¬ x flips all of the bits in x.
• What’s x|¬x equal to? Answer: -1.
• What is x + ¬x? Answer: -1.
• Why do + and | have the same effect here? We know there’s no carrying, because

there are no bit positions where both are lit up!
• Now let’s try ¬x + 1!
• Gosper’s Hack: A blog entry from CS207 (http://read.seas.harvard.edu/cs207/2012/?p=64)

3. A Bit About Sets

• Let’s see if we can use bits to construct a representation of a set that supports the
following operations:

– Membership?
– Set union
– Set intersection
– Set difference

• Suggestion: An array of bits: where 0 means it’s not in the set, and 1 means it’s
in the set.
• How many letters are there? 26! What fits in 26 - an unsigned int!
• We can represent sets of up to 32 objects in terms of bits. Very cheap operations!
• Empty set: 0
• Set containing only a character C, where C is between ‘a’ and ‘z’. Let’s use some

bitwise operators! We’re going to represent that set as 1 << (c − 97), which is
equivalent to 1 << (c − ‘a′) (ASCII). (Left shift takes a number, and adds zeroes



CS61: SYSTEMS PROGRAMMING AND MACHINE ORGANIZATION 5

to the lower end of the number, shifting everything to the left!) So we represent
{′a′} by 1, and {′b′} by 2.
• Set intersection: &
• Set union: |
• Membership: ‘c’ is in the set S iff {‘c′}∩S is non-empty. Or, in computer arithmetic:

(1 << (‘c′ − ‘a′))&S! = 0
• Set difference: x− (x&y), or (x|y)− y, or x∨(x&y), or x&¬(x&y)
• Singleton? x! = 0&&(x&(x− 1)) == 0. Power of 2 test from before!

4. Signed Arithmetic

• Idea: What if implementation of signed arithmetic was the same as unsigned?
• Bit pattern for signed -1 same as bit pattern for unsigned -1!
• Bit pattern for −x: 2w − x: two’s complement!
• We know that the number is negative if the left-most bit (sign bit) is a 1. If it is a

zero, then it’s non-negative. This is why the maximum is 2(w − 1), since a one bit
is used in signs.
• Anomaly:8 = 1000b = −8. So there’s no way to represent +8 in signed arithmetic

with this word size. Not symmetric about zero!


