
Computer Science 61
Lecture Notes for Lecture 3

Julian Debus, Eric Lu, and Jesse Chen

September 11, 2012

1 Introduction

Announcements: Thursday 9/13/2011: Room G115: Section on using Git and the CS 50 Appli-
ance

2 Computer Arithmetic

C data type largest representable value bytes
unsigned char 28 = 255 1
unsigned short 216− 1 = 65535 2
unsigned [int] 232− 1 = 42949672 4
unsigned long 232− 1 = 42949672 4
unsigned long long 264 − 1 = . . . 8

Unsigned arithmetic is the same as “normal” arithmetic mod 2w.
(w=#bits in a value)

2.1 Addition

Examples of addition in binary

011 (3)
+100 (4)
=111 (7)

100 (4)
+ 110 (6)
=1010 (10)

1

2.2 Subtraction

We are still only using unsigned arithmetic and thus can’t represent negative values. Nevertheless,
subtraction should be possible (we can subtract 3 from 4, afterall, using only positive numbers).

a− b = a+ (−b)

What is (-b)? Let’s say (−b) = c so that b+ c = 0.

b+ c == 0 mod 2w

b+ c == 2w mod 2w

c == 2w − b

We can subtract a number b from a number a, 0 ≤ b ≤ 2w by doing:

a+ (2w − b)

Example:
For w = 1: 1− 1 = 1 + 21 − 1 = 1 + 2− 1 = 1 + 1 = 0
For w = 3: 7− 3 = 7 + (23 − 3) = 7 + 5

111 (7)
+101 (5)
=100 (4)

2

3 C Operators

Operator Explanation
Arithmetic Operators

+ Addition
− Subtraction
/ Division
∗ Multiplication
% Modulus

Bitwise Operators
<< Bitwise shift left
>> Bitwise shift right
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

Logical Operators
&& Logical AND
|| Logical OR

Comparison Operators
== Equal to
! = Does not equal
< Less than
<= Less than/equal to
> Greater than
>= Greater than/equal to

x|y >= max(x, y) >= x, y >= min(x, y) >= x&y

Let:
x = 3 → 011
y = 5 → 101

x|y = 7 → 111. In every bit position in x|y, the value is greater or equal to the value of the
corresponding position in both x and y.
x&y = 1 → 001: In every bit position in x&y, the value is lower or equal to the value of the
corresponding position in both x and y.

This reveals the identity:

(x|y) - (x&y) = (x^y)x = 011
y = 101 111 001 110

Another interesting identity:
(x & (x-1)) == 0 iff x = 0 or x = 2k.
This ensures that upon subtracting 1, no two bits are 1 and therefore evaluate to 0.

Example:

3

x = 210

100000000
&011111111
=000000000

x = 0
000000000

&111111111
=000000000

If x ̸= 2k → x = 2k + y where 0 < y < 2k, then x − 1 is always greater than or equal to 2k. As a
result, we know that at least the k bits will both be 1. This means that when we do the bitwise and
of x and x-1, it cannot be 0.

~x = 4 → 100: Every bit in x is flipped.
x|~x = −1, since ~x+ 1 = −x
x+ ~x == x|~x
This is due to the fact that there can’t be two 1s in the same position when adding x and ~x and
therefore no carries (which would make a difference).

What’s a good representation for a computer for a set of letters?

1. Available letters: {’a’-’z’}
2. With the following operations

a) Lookup: Is a letter in the set?
b) Set union
c) Set intersection
d) Set difference

→ An array of bits where 1 means “letter in set” and 0 means “letter not in set”.
Empty Set: 0
We can represent {z} where z ∈ {’a’-’z’} as:

1 << (z − 97) == 1 << (z − ’ a ’)

x << 1 = 6 → 110: Left shift x by one bit position.
More Examples:
1 << 1 = 0010
1 << 2 = 0100

z == ‘a’: 1«(’a’ - ’a’) = 1«0 → 1
z == ’b’: 1«(’b’ - ’a’) = 1«1 → 2
z == ’c’: 1«(’c’ - ’a’) = 1«2 → 4

a) Lookup: Is a letter in the set?
A letter z is in the set S if:
{z} ∩ S ̸= ∅ ⇔ (1«(z-97))&S!=0

b) Set union
Union of set S1 and S2 represented by Integers s1 and s2:
S1 ∪ S2 ⇔ s1 & s2

c) Set intersection
Intersection of set S1 and S2 represented by Integers s1 and s2:
S1 ∩ S2 ⇔ s1 & s2

4

d) Set difference
Difference of set S1 and S2 represented by Integers s1 and s2:
S1 − S2 ⇔ s1 - (s1 & s2)
or S1 − S2 ⇔ s1 - ((s1|s2) - s2)

e) Bonus: Check for Singleton
x!=0 && (x&(x-1))==0

4 Signed arithmetic

Until now, we have only used unsigned arithmetic.
What if implementation of signed + and - was the same as unsigned?
→ The bit pattern for signed -1 must be the same as the bit pattern for unsigned -1.
Bit pattern for x (in unsigned representation): 2w + x. This is called Two’s Complement.

1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

There is no way to represent 2w−1!

�1 · 2w�1 2w�1 � 10 2w � 1 1�1

Signed

Unsigned

As can be seen in the table above, the first bit denotes whether the value is negative or not. Therefore,
bit w is called the sign bit.

5

