# Computer Science 61 <br> Lecture Notes for Lecture 3 

Julian Debus, Eric Lu, and Jesse Chen

September 11, 2012

## 1 Introduction

Announcements: Thursday 9/13/2011: Room G115: Section on using Git and the CS 50 Appliance

## 2 Computer Arithmetic

| C data type | largest representable value | bytes |
| :--- | :--- | :--- |
| unsigned char | $2^{8}=255$ | 1 |
| unsigned short | $2^{1} 6-1=65535$ | 2 |
| unsigned [int] | $2^{3} 2-1=42949672$ | 4 |
| unsigned long | $2^{3} 2-1=42949672$ | 4 |
| unsigned long long | $2^{64}-1=\ldots$ | 8 |

Unsigned arithmetic is the same as "normal" arithmetic $\bmod 2^{w}$. ( $w=\#$ bits in a value)

### 2.1 Addition

Examples of addition in binary

$$
\begin{array}{r}
011 \quad(3) \\
+100 \quad(4) \\
=111 \quad(7) \\
100 \quad(4) \\
+110 \quad(6) \\
=1010 \quad(10)
\end{array}
$$

### 2.2 Subtraction

We are still only using unsigned arithmetic and thus can't represent negative values. Nevertheless, subtraction should be possible (we can subtract 3 from 4, afterall, using only positive numbers).

$$
a-b=a+(-b)
$$

What is $(-b)$ ? Let's say $(-b)=c$ so that $b+c=0$.

$$
\begin{aligned}
b+c & ==0 \bmod 2^{w} \\
b+c & ==2^{w} \bmod 2^{w} \\
c & =2^{w}-b
\end{aligned}
$$

We can subtract a number $b$ from a number $a, 0 \leq b \leq 2^{w}$ by doing:

$$
a+\left(2^{w}-b\right)
$$

Example:
For $w=1: 1-1=1+2^{1}-1=1+2-1=1+1=0$
For $w=3: 7-3=7+\left(2^{3}-3\right)=7+5$
111 (7)
+101 (5)
$=100$ (4)

## 3 C Operators

| Operator |  |
| :--- | :---: |
|  | Arithmetic Operators |
| + | Addition |
| - | Subtraction |
| $/$ | Division |
| $*$ | Multiplication |
| $\%$ | Modulus |
|  | Bitwise Operators |
| $\ll$ | Bitwise shift left |
| $\gg$ | Bitwise shift right |
| $\&$ | Bitwise AND |
| $\mid$ | Bitwise OR |
|  | Bitwise XOR |
|  | Logical Operators |
| $\& \&$ | Logical AND |
| $\\|$ | Logical OR |
|  | Comparison Operators |
| $==$ | Equal to |
| $!=$ | Does not equal |
| $<$ | Less than |
| $<=$ | Less than/equal to |
| $>$ | Greater than |
| $>=$ | Greater than/equal to |

$x \mid y>=\max (x, y)>=x, y>=\min (x, y)>=x \& y$
Let:
$x=3 \rightarrow 011$
$y=5 \rightarrow 101$
$\mathbf{x} \mid \mathbf{y}=7 \rightarrow 111$. In every bit position in $\mathrm{x} \mid \mathrm{y}$, the value is greater or equal to the value of the corresponding position in both x and y .
$\mathbf{x} \& \mathbf{y}=1 \rightarrow 001$ : In every bit position in $x \& y$, the value is lower or equal to the value of the corresponding position in both x and y .

This reveals the identity:


Another interesting identity:
$(\mathrm{x} \&(\mathrm{x}-1))=0$ iff $x=0$ or $x=2^{k}$.
This ensures that upon subtracting 1 , no two bits are 1 and therefore evaluate to 0 .
Example:

$$
\begin{gathered}
x=2^{10} \\
100000000 \\
\& 011111111 \\
=000000000
\end{gathered}
$$

$$
\begin{aligned}
& x=0 \\
& 000000000 \\
& \& 111111111 \\
& =000000000
\end{aligned}
$$

If $x \neq 2^{k} \rightarrow x=2^{k}+y$ where $0<y<2^{k}$, then $x-1$ is always greater than or equal to $2^{k}$. As a result, we know that at least the k bits will both be 1 . This means that when we do the bitwise and of $x$ and $x-1$, it cannot be 0 .
$\sim \mathbf{x}=4 \rightarrow 100$ : Every bit in x is flipped.
$x \mid \sim x=-1$, since $\sim x+1=-x$
$x+\sim x==x \mid \sim x$
This is due to the fact that there can't be two 1 s in the same position when adding x and $\sim \mathrm{x}$ and therefore no carries (which would make a difference).

## What's a good representation for a computer for a set of letters?

1. Available letters: $\left\{{ }^{\prime}{ }^{\prime}--{ }^{\prime}\right.$ 'z'\}
2. With the following operations
a) Lookup: Is a letter in the set?
b) Set union
c) Set intersection
d) Set difference
$\rightarrow$ An array of bits where 1 means "letter in set" and 0 means "letter not in set".
Empty Set: 0
We can represent $\{z\}$ where $z \in\left\{{ }^{\prime}{ }^{\prime}{ }^{\prime}-{ }^{\prime}{ }^{\prime}\right.$ ' $\}$ as:
$1 \ll(z-97)=1 \ll\left(z-\quad{ }^{\prime}\right.$ ' $)$
$\mathbf{x} \ll \mathbf{1}=6 \rightarrow 110$ : Left shift x by one bit position.
More Examples:
$1 \ll 1=0010$
$1 \ll 2=0100$
$\mathrm{z}==$ 'a': $1 «(' a '-\quad ' a ')=1 « 0 \rightarrow 1$
$\mathrm{z}==$ 'b': $1 «\left(' b{ }^{\prime}-\quad\right.$ 'a') $=1 « 1 \rightarrow 2$
$\mathrm{z}==^{\prime} \mathrm{c}^{\prime}: 1 «\left(' \mathrm{c}^{\prime}-\mathrm{a}^{\prime}\right)=1 « 2 \rightarrow 4$
a) Lookup: Is a letter in the set?

A letter $z$ is in the set $S$ if:
$\{z\} \cap S \neq \emptyset \Leftrightarrow(1 «(\mathrm{z}-97)) \& \mathrm{~S}!=0$
b) Set union

Union of set $S_{1}$ and $S_{2}$ represented by Integers $s_{1}$ and $s_{2}$ :
$S_{1} \cup S_{2} \Leftrightarrow s_{1} \& s_{2}$
c) Set intersection

Intersection of set $S_{1}$ and $S_{2}$ represented by Integers $s_{1}$ and $s_{2}$ :
$S_{1} \cap S_{2} \Leftrightarrow s_{1} \& s_{2}$
d) Set difference

Difference of set $S_{1}$ and $S_{2}$ represented by Integers $s_{1}$ and $s_{2}$ :
$S_{1}-S_{2} \Leftrightarrow s_{1}-\left(s_{1} \& s_{2}\right)$
or $S_{1}-S_{2} \Leftrightarrow s_{1}-\left(\left(s_{1} \mid s_{2}\right)-s_{2}\right)$
e) Bonus: Check for Singleton
$\mathrm{x}!=0 \& \&(\mathrm{x} \&(\mathrm{x}-1))==0$

## 4 Signed arithmetic

Until now, we have only used unsigned arithmetic.
What if implementation of signed + and - was the same as unsigned?
$\rightarrow$ The bit pattern for signed -1 must be the same as the bit pattern for unsigned -1 .
Bit pattern for x (in unsigned representation): $2^{w}+x$. This is called Two's Complement.

| 1000 | -8 | 0000 | 0 |
| :--- | :--- | :--- | :--- |
| 1001 | -7 | 0001 | 1 |
| 1010 | -6 | 0010 | 2 |
| 1011 | -5 | 0011 | 3 |
| 1100 | -4 | 0100 | 4 |
| 1101 | -3 | 0101 | 5 |
| 1110 | -2 | 0110 | 6 |
| 1111 | -1 | 0111 | 7 |

There is no way to represent $2^{w-1}$ !


As can be seen in the table above, the first bit denotes whether the value is negative or not. Therefore, bit w is called the sign bit.

