Computer Science 61 Lecture Notes for Lecture 3

Julian Debus, Eric Lu, and Jesse Chen

September 11, 2012

1 Introduction

Announcements: Thursday 9/13/2011: Room G115: Section on using Git and the CS 50 Appliance

2 Computer Arithmetic

C data type	largest representable value	bytes
unsigned char	$2^8 = 255$	1
unsigned short	$2^{1}6 - 1 = 65535$	2
unsigned [int]	$2^32 - 1 = 42949672$	4
unsigned long	$2^32 - 1 = 42949672$	4
unsigned long long	$2^{64} - 1 = \dots$	8

Unsigned arithmetic is the same as "normal" arithmetic mod 2^w . (w=#bits in a value)

2.1 Addition

Examples of addition in binary

 $\begin{array}{c} 011 & (3) \\ +100 & (4) \\ =111 & (7) \\ 100 & (4) \\ + 110 & (6) \\ =1010 & (10) \end{array}$

2.2 Subtraction

We are still only using unsigned arithmetic and thus can't represent negative values. Nevertheless, subtraction should be possible (we can subtract 3 from 4, afterall, using only positive numbers).

$$a - b = a + (-b)$$

What is (-b)? Let's say (-b) = c so that b + c = 0.

$$b + c == 0 \mod 2^w$$
$$b + c == 2^w \mod 2^w$$
$$c == 2^w - b$$

We can subtract a number b from a number $a, 0 \le b \le 2^w$ by doing:

$$a + (2^w - b)$$

Example: For w = 1: $1 - 1 = 1 + 2^1 - 1 = 1 + 2 - 1 = 1 + 1 = 0$ For w = 3: $7 - 3 = 7 + (2^3 - 3) = 7 + 5$ 111 (7) +101 (5) =100 (4)

3 C Operators

Operator	Explanation			
Arithmetic Operators				
+	Addition			
—	Subtraction			
/	Division			
*	Multiplication			
%	Modulus			
Bitwise Operators				
<<	Bitwise shift left			
>>	Bitwise shift right			
&	Bitwise AND			
	Bitwise OR			
	Bitwise XOR			
Logical Operators				
&&	Logical AND			
	Logical OR			
Comparison Operators				
==	Equal to			
! =	Does not equal			
<	Less than			
<=	Less than/equal to			
>	Greater than			
>=	Greater than/equal to			

$$x|y>=max(x,y)>=x,y>=min(x,y)>=x\&y$$

Let: $x = 3 \rightarrow 011$

 $y=5\rightarrow 101$

 $\mathbf{x}|\mathbf{y} = 7 \rightarrow 111$. In every bit position in $\mathbf{x}|\mathbf{y}$, the value is greater or equal to the value of the corresponding position in both x and y.

 $\mathbf{x} \& \mathbf{y} = 1 \to 001$: In every bit position in x & y, the value is lower or equal to the value of the corresponding position in both x and y.

This reveals the identity:

Another interesting identity: (x & (x-1)) == 0 iff x = 0 or $x = 2^k$.

This ensures that upon subtracting 1, no two bits are 1 and therefore evaluate to 0.

Example:

$x = 2^{10}$	x = 0
10000000	00000000
&011111111	&11111111
=000000000	=000000000

If $x \neq 2^k \rightarrow x = 2^k + y$ where $0 < y < 2^k$, then x - 1 is always greater than or equal to 2^k . As a result, we know that at least the k bits will both be 1. This means that when we do the bitwise and of x and x-1, it cannot be 0.

 $\sim \mathbf{x} = 4 \rightarrow 100$: Every bit in x is flipped. $x \mid \sim x = -1$, since $\sim x + 1 = -x$ $x + \sim x == x \mid \sim x$ This is due to the fact that there gen't

This is due to the fact that there can't be two 1s in the same position when adding x and \sim x and therefore no carries (which would make a difference).

What's a good representation for a computer for a set of letters?

- 1. Available letters: $\{a'-z'\}$
- 2. With the following operations
 - a) Lookup: Is a letter in the set?
 - b) Set union
 - c) Set intersection
 - d) Set difference

 \rightarrow An array of bits where 1 means "letter in set" and 0 means "letter not in set". Empty Set: 0

We can represent $\{z\}$ where $z \in \{a'-z'\}$ as:

$$1 \ll (z - 97) = 1 \ll (z - a')$$

 $\mathbf{x}<<\mathbf{1}=6\rightarrow 110:$ Left shift x by one bit position.

More Examples: 1 << 1 = 0010 1 << 2 = 0100 $z == 'a': 1 < ('a' - 'a') = 1 < 0 \rightarrow 1$ $z == 'b': 1 < ('b' - 'a') = 1 < 1 \rightarrow 2$ $z == 'c': 1 < ('c' - 'a') = 1 < 2 \rightarrow 4$

a) Lookup: Is a letter in the set? A letter z is in the set S if: $\{z\} \cap S \neq \emptyset \Leftrightarrow (1 \ll (z-97)) \& S!=0$

b) Set union Union of set S_1 and S_2 represented by Integers s_1 and s_2 : $S_1 \cup S_2 \Leftrightarrow s_1 \& s_2$

c) Set intersection Intersection of set S_1 and S_2 represented by Integers s_1 and s_2 : $S_1 \cap S_2 \Leftrightarrow s_1 \& s_2$ d) Set difference Difference of set S_1 and S_2 represented by Integers s_1 and s_2 : $S_1 - S_2 \Leftrightarrow s_1 - (s_1 \& s_2)$ or $S_1 - S_2 \Leftrightarrow s_1 - ((s_1|s_2) - s_2)$

e) Bonus: Check for Singleton x!=0 && (x&(x-1))==0

4 Signed arithmetic

Until now, we have only used unsigned arithmetic.

What if implementation of signed + and - was the same as unsigned?

 \rightarrow The bit pattern for signed -1 must be the same as the bit pattern for unsigned -1.

Bit pattern for x (in unsigned representation): $2^w + x$. This is called **Two's Complement**.

-8	0000	0
-7	0001	1
-6	0010	2
-5	0011	3
-4	0100	4
-3	0101	5
-2	0110	6
-1	0111	7
	-7 -6 -5 -4 -3 -2	-70001-60010-50011-40100-30101-20110

There is no way to represent 2^{w-1} !

As can be seen in the table above, the first bit denotes whether the value is negative or not. Therefore, bit w is called the **sign bit**.