Computer Science 61
Lecture Notes for Lecture 3

Julian Debus, Eric Lu, and Jesse Chen

September 11, 2012

1 Introduction

Announcements: Thursday 9/13/2011: Room G115: Section on using Git and the CS 50 Appli-
ance

2 Computer Arithmetic

C data type largest representable value bytes
unsigned char 28 = 255 1
unsigned short 216 — 1 = 65535 2
unsigned [int] 232 — 1 = 42949672 4
unsigned long 232 — 1 = 42949672 4
unsigned long long 264 —1= ... 8

Unsigned arithmetic is the same as “normal” arithmetic mod 2%.
(w=#tbits in a value)

2.1 Addition

Examples of addition in binary

011 (3)
+100 (4)
=111 (7)

100 (4)
+ 110 (6)
=1010 (10)

2.2 Subtraction

We are still only using unsigned arithmetic and thus can’t represent negative values. Nevertheless,
subtraction should be possible (we can subtract 3 from 4, afterall, using only positive numbers).

a—b=a+ (-b)

What is (-b)? Let’s say (—b) = ¢ so that b+ ¢ = 0.

b+c==0 mod 2%
b+c==2" mod 2%
c==2"—-b

We can subtract a number b from a number a, 0 < b < 2% by doing:

a+ (2¥ —b)

Example:
Forw=1:1-1=142'-1=142-1=14+1=0
Forw=37-3=7+(22-3)=7+5

111 (7)

+101 (5)

=100 (4)

3 C Operators

Operator Explanation
Arithmetic Operators

+ Addition
- Subtraction
/ Division
* Multiplication
% Modulus

Bitwise Operators
<< Bitwise shift left
>> Bitwise shift right
& Bitwise AND
| Bitwise OR

Bitwise XOR
Logical Operators

&& Logical AND

[l Logical OR
Comparison Operators

== Equal to

= Does not equal

< Less than

<= Less than/equal to

> Greater than

>= Greater than/equal to

x|y >= maz(x,y) >= z,y >= min(x,y) >= z&y

Let:
r=3—011
y=5—101

x|y = 7 — 111. In every bit position in x|y, the value is greater or equal to the value of the
corresponding position in both x and y.
x&y = 1 — 001: In every bit position in x&y, the value is lower or equal to the value of the
corresponding position in both x and y.

This reveals the identity:

011 (xly) - (x&y) = (x"y)
1|(|)1I 111 001 11ch>

Another interesting identity:
(x & (x-1)) == 0 iff x = 0 or x = 2.
This ensures that upon subtracting 1, no two bits are 1 and therefore evaluate to 0.

Ezxample:

100000000 000000000
&011111111 &111111111
=000000000 =000000000

If # # 2F — 2 = 2 + y where 0 < y < 2F, then = — 1 is always greater than or equal to 2¥. As a
result, we know that at least the k bits will both be 1. This means that when we do the bitwise and
of x and x-1, it cannot be 0.

~x =4 — 100: Every bit in x is flipped.

x|~r = —1, since ~z + 1 = —x

T+ ~x == x|~z

This is due to the fact that there can’t be two 1s in the same position when adding x and ~x and
therefore no carries (which would make a difference).

What’s a good representation for a computer for a set of letters?

1. Available letters: {’a’-'z’}

2. With the following operations
a) Lookup: Is a letter in the set?
b) Set union

c¢) Set intersection
d) Set difference

— An array of bits where 1 means “letter in set” and 0 means “letter not in set”.
Empty Set: 0
We can represent {z} where z € {’a’-’z’} as:

1 << (z —97) =1 << (z — ’a’)

x << 1 =06 — 110: Left shift x by one bit position.
More Examples:

1 << 1=0010

1 << 2=0100

z=="‘a 1«('a’-’a’) = 1«0 — 1
7 == ’b’: 1(((’b7 - ’a,,) = 1«1 — 2
z=="c" 1«(c’-’a") = 1«2 — 4

a) Lookup: Is a letter in the set?
A letter z is in the set S if:
{z} NS #0 < (1¢(z-97))&S!=0

b) Set union
Union of set S and Sy represented by Integers s; and sa:
S1USy & 51 & s9

c) Set intersection
Intersection of set S7 and Sy represented by Integers s; and sa:
S1NSy; < s1 & s9

d) Set difference

Difference of set S; and Sy represented by Integers s; and ss:
Sl—S2<:>81— (81 &82)

or Sl — SQ < S1 - ((81|52) - 82)

e) Bonus: Check for Singleton
xI=0 && (x&(x-1))==

4 Signed arithmetic

Until now, we have only used unsigned arithmetic.

What if implementation of signed + and - was the same as unsigned?

— The bit pattern for signed -1 must be the same as the bit pattern for unsigned -1.

Bit pattern for x (in unsigned representation): 2% + x. This is called Two’s Complement.

1000 -8 0000
1001 -7 0001
1010 -6 0010
1011 -5 0011
1100 -4 0100
1101 -3 0101
1110 -2 0110
1111 -1 o111 7

There is no way to represent 2¢~1!

ST W N~ O

—00 —1.9w-t 0 w1l _q 2w _ 1

]]]]
<< | | | |
| Unsigned |

| Signed |

As can be seen in the table above, the first bit denotes whether the value is negative or not. Therefore,
bit w is called the sign bit.

V&

