
11/10/16 CS61 Fall 2016 1 1

Pipes

•  Topics
•  Pipes: What are they?
•  How do you set them up?

•  Learning Objectives:
•  Identify when file descriptors share entries in the file open

table and when they do not.
•  Be able to write code to properly set up a pipe between

different kinds of processes:
•  Parent/child
•  Siblings

Communicating among processes

•  You’ve all used the | character to create pipes on the command line in the
shell (I hope).

•  And you should have all worked on optimizing a pipe implementation for
Weensy.

•  But, what exactly is a pipe?
•  The effect:

•  When you type:
% foo | bar

•  The stdout stream of foo is connected to the stdin stream of bar.
•  You’ve probably used the file pointers, stderr, stdout, stdin in

fprintf and fscanf.
•  STDIN_FILENO/STDOUT_FILENO(and STDERR_FILENO) are the

corresponding file descriptors.
•  They are opened on behalf of every process.

•  By convention, stdin comes from the console
•  By convention, stdout and stderr go to the display

•  Allowing two proceses to interact as shown above requires that we connect
foo’s stdout to bar’s stdin

11/10/16 CS61 Fall 2016 2

File Descriptors and fork

•  Recall that when a parent forks:
•  Any open files in the parent are open in the child.
•  The parent and child share the open-file structure

referenced by the file descriptors
•  The parent and child share the same offset

•  Let’s look at share.c and own.c
•  share.c opens a file before forking
•  own.c opens a file after forking
•  Run each and examine the output in data.out

11/10/16 CS61 Fall 2016 3

Creating a pipe: The pipe system call

•  pipe(int filedes[2]) creates a pair of file
descriptors and places them in the array
referenced by filedes.
•  filedes[0] is for reading
•  filedes[1] is for writing

•  By combining, fork, exec, and pipe, parents can
communicate with children and/or set up pipelines
between children.

11/10/16 CS61 Fall 2016 4

Screen Capture

•  Let’s look at pipe.c
•  Now, let’s run it.

•  Notice: The child is the only one printing, and it can only print
what it reads from the pipe, so anything the parent writes on
the pipe gets read by the child.

•  Notice: After the parent exits, the child is still running. Type
ps to see this. (You can kill it by typing kill pid. E.g.,
kill 4932).

•  Why?????

11/10/16 CS61 Fall 2016 5

Pipe Hygiene?

•  This is the term we use to describe the process of
properly closing any unused ends of pipes.

•  Why do we care?
1.  From the man page, “The pipe itself persists until all of its

associated descriptors are closed.”
•  Implication if we don’t close descriptors, then the pipe could stick

around a long time/forever. Pipes consume operating system
resources, so you probably don’t want that.

2.  Let’s say that we have Parent writing into a pipe from which
Child is reading.
•  When will Child get EOF on the pipe?
•  Answer: when the write end is closed.
•  Implication: if we create a pipe between between two processes and

only one ever closes the write end, the other could block forever trying
to read from the pipe, because it will never receive the eof indicator.

11/10/16 CS61 Fall 2016 6

Pipe Specifications

•  A pipe whose read or write end is closed (by all
opens) is called widowed.

•  The only way to deliver EOF is to widow the pipe (i.e.,
close the write end).
•  At that point, a reader will read any data that has been

buffered from the writer and after consuming all that data will
get a 0-byte return.

•  If you try to write to a widowed pipe (i.e., the read end
is closed) the writing process will get a SIGPIPE
signal.

11/10/16 CS61 Fall 2016 7

Pipes by Pictures

11/10/16 CS61 Fall 2016 8

Parent

File descriptor table

Pipes by Pictures

11/10/16 CS61 Fall 2016 9

Parent Child

File descriptor table File descriptor table

Write end Read end

Screen Capture

•  Let’s add a close call where we think we need it.
•  The file pipe1.c contains a version with this change

in it.
•  Now, if we run pipe, does the child exit?

11/10/16 CS61 Fall 2016 10

Pipes and stdin/stdout

•  So, we’ve created a pipe and we can write into it and
have another process read from it.

•  How do we make this work for stdin and stdout?

11/10/16 CS61 Fall 2016 11

The dup2 system call

•  dup2(int filedes, int filedes2)
•  duplicates the first file descriptor (filedes) into the second

file descriptor (filedes2).
•  After the call, both file descriptors refer to the same object,

so reading from/writing to one descriptor changes the file
position in both descriptors.

•  If filedes2 already refers to an open object, that object is
closed.

•  How does this help us?

11/10/16 CS61 Fall 2016 12

Pipes by Pictures

11/10/16 CS61 Fall 2016 13

Parent Child

File descriptor table File descriptor table

Write end Read end

Screen Capture

•  Let’s use dup2 and see if we can write to stdout
and read from stdin.

•  The code that does this is in pipe2.c
•  The code in pipe3.c uses printf and scanf to

really convince you that this is what’s happening.

11/10/16 CS61 Fall 2016 14

Creating a Pipeline (foo | bar)
Note: Terrible error handling to save space!

pid_t child1, child2;
int pipedes[2], status;

assert (pipe(pipedes) == 0); /* Create the pipe. */
child1 = fork();
if (child1 == 0) {

/* child */
close(pipedes[0]); /* Close read end */
dup2(pipedes[1], STDOUT_FILENO); /* Make stdout the same as the pipe write fd */
execvp(“foo”, argv); /* Assume argp is set */

}
/* only parent gets here */
child2 = fork();
if (child2 == 0) {

/* child */
close (pipedes[1]); /* Close writing end */
dup2(pipedes[0], STDIN_FILENO); /* Make stdin the same as the pipe read fd */
execvp(“bar”, argv);

}
/* Parent once again */
close (pipedes[0]); /* Close pipe fDs in parent. */
close (pipedes[1]);
waitpid(child2, &status, 0); /* Wait for second process to complete. */

11/10/16 CS61 Fall 2016 15

Picture of Pipeline

11/10/16 CS61 Fall 2016 16

