
Synchronization Problems
and Deadlock

CS61, Lecture 20
Prof. Stephen Chong
November 10, 2011

Stephen Chong, Harvard University 2

Today

•Race conditions
•The THERAC-25 Accidents

•Priority inversion
•Mars Pathfinder

•Deadlock and how to avoid it

Stephen Chong, Harvard University 3

Therac-25

•Computer-controlled radiation therapy machine
•In operation between 1983 and 1987, 11 installations

Stephen Chong, Harvard University 4

Accidents

• Capable of delivering electron and photon (X-Ray) treatments

• “Evolved” from earlier models, Therac-20 and Therac-6

• On several occasions between June '85 and Jan '87
• Massive overdoses to six people, some lethal

• Several overdoses delivered energy of 15,000 – 20,000 rads
• Typical therapeutic doses in the 200 rad range

• Various lawsuits, all settled out of court
• No formal investigation

• Initially, manufacturer claimed that overdoses were impossible

• Many issues with the Therac-25
• Software design methodology

• Software/hardware engineering

• User interface

• Concurrency

Stephen Chong, Harvard University 5

Therac-25 operation

• A turntable aperture that moves certain elements into the path of the beam

• Field light mode used to position beam on patient

• No electron beam expected, instead, a light simulates the beam
position

• Electron scan magnet and X-Ray field flattener used to attentuate and
spread electron and X-Ray beams

Electron scan magnet Field light position
(no electron beam)

X-Ray field flattener

Beam

Computer controls position of turntable

Stephen Chong, Harvard University

Therac-25 operation

• Unlike previous models, completely computer controlled
• No hardware interlocks to prevent misconfigurations or overdoses!

• Software from old models re-used.

• All software written in PDP-11 assembly language

• Operator uses a VT-100 terminal to control machine

• Cryptic error messages delivered to operator console
• e.g., “Malfunction 23”

• No documentation of these error codes, no indication of which errors are
potentially life-threatening

6

Stephen Chong, Harvard University

Therac-25 internals

• 4 components: scheduler, critical and non-critical tasks, interrupt
services, and stored data
• Preemptive scheduler schedules critical and non-critical tasks

• Critical tasks include:
• Treatment task

• Directs and monitors patient setup and treatment

• Interacts with keyboard and terminal interrupt services

• Servo task
• Controls gun emission, dose rate, turntable, and other machine motions

• Concurrent access to shared memory with no synchronization
• Test and set are not atomic

• Race conditions resulting from this play an important part in the accidents

7

Stephen Chong, Harvard University 8

Race Condition #1

• It was discovered that overdose could be caused by operator editing the dosage on
the console too quickly
• Operator enters dosage on screen, moves to bottom, moves back up to edit dosage, and back to bottom

• Second edit displayed on screen, but ignored by machine

• Bug not triggered in testing/training, since needs to be done quickly

• What happened?

• Treatment task
• Periodically checks entryDone flag (which is set when cursor moved to bottom of screen)

• If flag is set, calls subroutine to configure the magnets (takes about 8 seconds)

• Configure magnet task
• Called periodically to check if magnets are ready

• Checks if edits have been made to dosage; If so, exits back to calling subroutine to restart the process

• Critical bug: Only checks if edits made on the first call!

• Also, entryDone flag indicates cursor was at bottom of screen, not that it is still
there. Race condition between user editing dosage and reading dosage.

Stephen Chong, Harvard University 9

Race Condition #2

• Second bug – totally different causes from the first

• Software interlocks intended to stop beam from being turned on unless
turntable in correct position

• Problem: Turntable could be in field light position while X-Ray beam on

Electron scan magnet Field light position
(no electron beam)

X-Ray field flattener

Beam

Computer controls position of turntable

Stephen Chong, Harvard University 10

Race Condition #2

• Dosage entered on console; Operator then presses SET button to set turntable to
correct position

• Software interlock:

• Shared variable Class3 indicates whether machine configuration consistent with
dosage: zero == OK, non-zero == inconsistent

• Shared variable Fmal indicates whether a malfunction exists

• Set up test task runs after dosage entered, and periodically checks if machine
configured consistently with dosage
• Increments variable “Class3” on each iteration

• Will be run many times

• If position correct and no malfunctions (Fmal == 0), sets “Class3 := 0”

• When SET button is pressed, Housekeeping task runs

• If Class3 != 0 check whether turntable in place (set a bit of Fmal)

• Skip check if Class3 == 0.

• Can you spot the bug?

Stephen Chong, Harvard University 11

Race Condition #2

• The bug: Class3 variable is 8 bits wide
• After 256 iterations of “set up test” routine, overflows and becomes zero!

• So if operator presses SET button during short interval that Class3
overflows, does not check turntable position

• Fix: Set Class3 to some nonzero value, rather than
incrementing it
• Why was this done? Probably because inc instruction was easy enough...

Stephen Chong, Harvard University 12

Mars Pathfinder

• July 4, 1997 landing on Martian surface, followed by expeditions
by Sojourner rover

• Series of software glitches started a few days after landing

• Eventually debugged and patched remotely from Earth!

Stephen Chong, Harvard University 13

VxWorks Operating System

• Developed by Wind River Systems – premier real time OS

• Multiple tasks, each with an associated priority
• Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
• Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Obtain mutex; write data Wait for mutex to read data

Stephen Chong, Harvard University 14

VxWorks Operating System

• Developed by Wind River Systems – premier real time OS

• Multiple tasks, each with an associated priority
• Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
• Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Free mutex

Stephen Chong, Harvard University 15

VxWorks Operating System

• Developed by Wind River Systems – premier real time OS

• Multiple tasks, each with an associated priority
• Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
• Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Lock mutex
and read data

• What happens when threads have different priorities?

• Suppose the low priority thread has the mutex, and medium priority thread needs
the CPU
• Medium thread has higher priority than Low thread, so gets the CPU. Runs for a long time.

• But High thread waiting for Low thread to finish! Medium thread running instead of High!

• This is called priority inversion

Stephen Chong, Harvard University 16

Priority inversion

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Low priority Medium priority High priority

Communication
Thread

Stephen Chong, Harvard University 17

How to fix priority inversion?

• Priority inversion:
• A high priority thread is waiting for a low priority thread to finish (this is OK)

• Medium priority thread comes along and preempts Low thread

• Now Medium thread running instead of finishing Low thread

• General solution: Priority inheritance
• If high priority thread is waiting for a low priority thread, temporarily give low

thread high priority

• High priority thread “donates” its priority to the low priority thread

• Why does this fix the problem?
• Weather task inherits high priority while it is being waited on

• Now medium priority communications task cannot preempt weather task

Stephen Chong, Harvard University 18

How was this problem fixed?

• JPL had a replica of the Pathfinder system on the ground
• Special tracing mode maintains logs of all interesting system events

• e.g., context switches, mutex lock/unlock, interrupts

• After much testing were able to replicate the problem in the lab

• VxWorks mutex objects have an optional priority inheritance flag
• Engineers were able to upload a patch to set this flag on the info bus mutex

• After the fix, no more system resets occurred

• Lessons:
• Automatically reset system to “known good” state if things run amuck

• Far better than hanging or crashing

• Ability to trace execution of complex multithreaded code is useful

• Think through all possible thread interactions carefully!!

Stephen Chong, Harvard University 19

Today

•Race conditions
•The THERAC-25 Accidents

•Priority inversion
•Mars Pathfinder

•Deadlock and how to avoid it

Stephen Chong, Harvard University 20

Deadlock

• With priority inversion, eventually the system makes progress
• e.g., Comm. thread eventually finishes and rest of system proceeds

• Pathfinder watchdog timer reset the system too quickly!

• A far more serious situation is deadlock
• Two (or more) threads waiting for each other

• None of the deadlocked threads ever make progress

Mutex

Thread 1

holds

Mutex
Thread 2

holds

waits for

waits for

Stephen Chong, Harvard University 21

Deadlock Definition

•Deadlock: A circular waiting for resources
• E.g., Thread A is waiting for a mutex Thread B has

 Thread B is waiting for a mutex Thread C has
 Thread C is waiting for a mutex Thread A has

• Starvation: a thread never makes progress because other
threads are using resources it needs

• Starvation ≠ Deadlock

•Deadlock can be seen as a special case of starvation

Stephen Chong, Harvard University 22

Conditions for Deadlock

• Limited access to a resource
• Means some threads will have to wait to access a shared resource. E.g., mutual

exclusion

• No preemption
• Means resource cannot be forcibly taken away from a thread

• Two kinds of resources:
• Preemptible: Can take away from a thread (e.g., the CPU)

• Non-preemptible: Can't take away from a thread (e.g., mutex, lock, virtual memory region, etc.)

• Multiple independent requests
• Means a thread can wait for some resources while holding others

• Circular dependency graph
• Just as in previous example

• Without all of these conditions, can't have deadlock!
• This suggests several ways to get rid of deadlock

Why is it unsafe to
take a lock away from

a thread?

Stephen Chong, Harvard University 23

Getting rid of deadlock

• Unlimited access to a resource?
• Requires that all resources allow arbitrary number of concurrent accesses

• Probably not too feasible!

• Always allow preemption?
• Is it safe to let multiple threads into a critical section?

• No multiple independent requests?
• This might work!

• Require that threads grab all resources they need before using any of them!
• Not allowed to wait while holding some resources!

• No circular chains of requests?
• This might work too!

• Require threads to grab resources in some predefined order!

Stephen Chong, Harvard University 24

Dining Philosophers

• Classic deadlock problem
• Multiple philosophers trying to have Thanksgiving lunch

• One chopstick to left and right of each philosopher

• Each one needs two
chopsticks to eat

Stephen Chong, Harvard University 25

Dining Philosophers

• What happens if everyone grabs the chopstick to their right?
• Everyone gets one chopstick and waits forever for the one on the left

• All of the philosophers starve!!!

Stephen Chong, Harvard University 26

How to solve this problem?

•Solution 1: Don't wait for chopsticks
•Grab the chopstick on your right

•Try to grab chopstick on your left

•If you can't grab it, put the other one back down

•Breaks “no preemption” condition – no waiting!

•Solution 2: Grab both chopsticks at once
•Requires some kind of extra synchronization to make it atomic

•Breaks “multiple independent requests” condition!

Stephen Chong, Harvard University 27

How to solve this problem?

•Solution 3: Grab chopsticks in a globally defined order
•Number chopsticks 0, 1, 2, 3, 4, 5, 6, 7

•Grab lower-numbered chopstick first
• Means one person grabs left hand rather than right hand first!

•Breaks “circular dependency” condition

•Solution 4: Detect the deadlock condition and break out
of it
•Scan the waiting graph and look for cycles

•Shoot one of the threads to break the cycle

Stephen Chong, Harvard University

Another problem: child care

• Fun problem, from The Little Book of Semaphores, by Allen B. Downey

• State law requires that at a child care center, there is always one adult
present for every three children.

• Suppose that there are adult threads and child threads, each of which
has a critical section. Write the code for adult threads and child threads
to enforce this constraint.

• Hint: Can almost do it with 1 semaphore
 semaphore multiplex = 0

28

// Add code here?
…
critical section
…
// Add code here?

// Add code here?
…
critical section
…
// Add code here?

Adult thread Child thread

Stephen Chong, Harvard University

Almost solution

•Semaphore counts number of tokens
•Adult adds three tokens

•Child takes one

•What’s wrong with this code?
29

semaphore multiplex = 0;

// signal 3 times
signal(multiplex);
signal(multiplex);
signal(multiplex);
…
critical section
…
// wait 3 times
wait(multiplex);
wait(multiplex);
wait(multiplex);

// wait for a token
wait(multiplex)
…
critical section
…
// signal
signal(multiplex)

Adult thread

Child thread

Stephen Chong, Harvard University

Almost solution

• Potential deadlock!
• Imagine 3 children and two adults arrive in the center

• Value of multiplex is 3, so either adult should be able to leave

• But if they start to leave at the same time, they will both block.

• Solve this problem...

30

semaphore multiplex = 0;

// signal 3 times
signal(multiplex);
signal(multiplex);
signal(multiplex);
…
critical section
…
// wait 3 times
wait(multiplex);
wait(multiplex);
wait(multiplex);

// wait for a token
wait(multiplex)
…
critical section
…
// signal
signal(multiplex)

Adult thread

Child thread

Stephen Chong, Harvard University

Solution!

• Add a mutex for the adults leaving
• Now the three wait operations are atomic. If there are three token available, adult

thread with mutex will get all 3 tokens.

31

semaphore multiplex = 0;
semaphore mutex = 1;
// signal 3 times
signal(multiplex);
signal(multiplex);
signal(multiplex);
…
critical section
…
// wait 3 times
wait(mutex);
 wait(multiplex);
 wait(multiplex);
 wait(multiplex);
signal(mutex);

// wait for a token
wait(multiplex)
…
critical section
…
// signal
signal(multiplex)

Adult thread

Child thread

Stephen Chong, Harvard University

And for those with too much time...

• But in this solution an adult thread leaving can prevent children from entering…
• E.g., 4 children and 2 adults. multiplex = 2, so adult leaving will take two tokens and

block.
• Child comes along, and cannot enter, even though it is legal!

32

// wait for a token
wait(multiplex)
…
critical section
…
// signal
signal(multiplex)

Adult thread

Child thread
semaphore multiplex = 0;
semaphore mutex = 1;
// signal 3 times
signal(multiplex);
signal(multiplex);
signal(multiplex);
…
critical section
…
// wait 3 times
wait(mutex);
 wait(multiplex);
 wait(multiplex);
 wait(multiplex);
signal(mutex);

