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Announcements

•Homework 3 (the Buffer Bomb) due in one week

•There will be no section on Columbus Day (Monday Oct 
10)
•Section TFs will reschedule, and info posted on website

•Remember: you can attend any section
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CISC vs RISC

•CISC (“sisk”): Complex Instruction Set Computer
•RISC (“risk”): Reduced Instruction Set Computer
•Different philosophies regarding the design (and 

implementation) of ISAs
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CISC vs RISC

•CISC (“sisk”): Complex Instruction Set Computer
•Historically first
•Large instruction sets (x86 has several hundred)
•Specialized instructions for high-level tasks

• Instructions that are closer to what applications are wanting to 
do

• Can provide hardware support for application-specific 
instructions
‣ E.g., x86 contains instructions such as LOOPZ label, which decrements 

%cx (without modifying flags) and jumps to label if %cx is non-zero

•Presents a clean interface to programmer
• Hides implementation details such as pipelining
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CISC vs RISC

• RISC (“risk”): Reduced Instruction Set Computer
• Philosophy developed in early 1980s

• Small, simple, instruction sets (typically <100)
• E.g., may have only base+displacement memory addressing

• E.g., memory access only via load and store; ALU operations need register 
operands

• E.g., no condition codes, only explicit test instructions

• Often fixed length encodings for instructions

• Leads to simple, efficient implementation

• Reveals implementation details to programmer (e.g., pipe-lining)
• E.g., certain instruction sequences may be prohibited

• E.g., jump instruction may not take effect until after following instruction
‣ Compiler must be aware of these restrictions, and can use them to optimize performance

• ARM (originally “Acorn RISC Machine”) widely used in embedded devices
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Modern computers

•In most settings, neither CISC nor RISC clearly better
•RISC machines

•Exposing implementation details made it difficult to use 
them, and difficult to evolve the ISA

•Added more instructions

•CISC machines
•Take advantage of RISC-like pipelines

• Essentially translate CISC instructions into simpler RISC-like 
instructions

• E.g., addl %eax, 8(%esp) broken up into a load from 
memory, followed by an addition, followed by a store to memory
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Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors 

•Loop unrolling

•Tail recursion

•Summary
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Getting the best performance

• There’s more to performance than asymptotic complexity!

• Constant factors matter too
• Easily see 10×–100× difference depending on how code is written

• Must optimize at multiple levels: 
• algorithm structure (locality, instruction level parallelism, ...)

• data representations (e.g., structs vs arrays)

• coding style (e.g., unnecessary procedure calls, unrolling, reordering, ...)

• Must understand underlying system to optimize performance
• How programs are compiled and executed

• How to measure program performance and identify bottlenecks

• How to improve performance while maintaining code modularity and 
generality
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Optimizing compilers (e.g., gcc)

•Compilers do a lot of optimization when generating 
machine code

•Use optimization flags when compiling
•Default is no optimization (-O0)

•Good choices for gcc: -O2, -O3, -march=xxx, -m64
•Try different flags and maybe different compilers
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Optimizing compilers (e.g., gcc)

• Compilers are good at: mapping programs to machines
• register allocation

• instruction selection and ordering (scheduling)

• dead code elimination

• eliminating minor inefficiencies

• Compilers are not good at: improving asymptotic efficiency
• up to programmer to select best overall algorithm

• big-O savings are (often) more important than constant factors

• but constant factors also matter

• Compilers are not good at: overcoming “optimization blockers”
• potential memory aliasing

• potential procedure side-effects
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Limitations of Optimizing Compilers

• When in doubt, the compiler must be conservative

• Must not change program behavior under any possible condition
• Often prevents it from making optimizations when would only affect behavior 

under pathological conditions.

• Behavior that may be obvious to the programmer can  be obfuscated 
by languages and coding styles
• e.g., data ranges may be more limited than variable types suggest

• Most analysis is performed only within procedures
• Whole-program analysis is too expensive in most cases

• Not amenable to modular compilation

• Code analysis generally based only on static information
• That is, whatever it can determine at compile time

• Difficult (in general, undecidable) to determine run-time, or dynamic, behavior
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Machine-independent optimizations

•Some simple optimizations, regardless of specific 
machine or compiler
•Code motion

•Strength reduction
•Common subexpressions

•For some instances of these optimizations, almost 
all compilers will perform them

•For other instances, very difficult for a compiler to 
perform them
•You need to understand why

12
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Code motion

•Key idea: Move code to reduce the number of 
times it executes

•Most common case: move code out of loop
•E.g.

•Moving code means n-1 fewer multiplications!
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void set_row(long *a, long *b,
   long i, long n)
{
    long j;

    for (j = 0; j < n; j++) {
        a[n*i+j] = b[j];
    }
}

    long j;
    int ni = n*i;
    for (j = 0; j < n; j++) {
        a[ni+j] = b[j];
    }

void set_row(long *a, long *b,
   long i, long n)
{
    long j;

    for (j = 0; j < n; j++) {
        a[n*i+j] = b[j];
    }
}

    long j;
    int ni = n*i;
    for (j = 0; j < n; j++) {
        a[ni+j] = b[j];
    }



set_row:
        pushl   %ebp                # Setup
        movl    %esp, %ebp
        pushl   %esi
        pushl   %ebx
        movl    12(%ebp), %esi      # esi = b
        movl    20(%ebp), %ebx      # ebx = n
        testl   %ebx, %ebx          # is n <= 0?
        jle     .L26                #   return
        movl    %ebx, %edx          # edx = n
        imull   16(%ebp), %edx      # edx = n*i
        movl    8(%ebp), %eax       # eax = a
        leal    (%eax,%edx,4), %edx # edx = &(a[n*i])
        movl    $0, %ecx            # ecx = 0
.L25:
        movl    (%esi,%ecx,4), %eax # eax = &(b[j])
        movl    %eax, (%edx)        # a[n*i+j] = b[j]
        addl    $1, %ecx            # j++
        addl    $4, %edx            # edx = next element of a
        cmpl    %ecx, %ebx          # j == n?
        jne     .L25                #   if not, continue loop
.L26:
        popl    %ebx               # Finish
        popl    %esi
        popl    %ebp
        ret

set_row:
        pushl   %ebp                # Setup
        movl    %esp, %ebp
        pushl   %esi
        pushl   %ebx
        movl    12(%ebp), %esi      # esi = b
        movl    20(%ebp), %ebx      # ebx = n
        testl   %ebx, %ebx          # is n <= 0?
        jle     .L26                #   return
        movl    %ebx, %edx          # edx = n
        imull   16(%ebp), %edx      # edx = n*i
        movl    8(%ebp), %eax       # eax = a
        leal    (%eax,%edx,4), %edx # edx = &(a[n*i])
        movl    $0, %ecx            # ecx = 0
.L25:
        movl    (%esi,%ecx,4), %eax # eax = &(b[j])
        movl    %eax, (%edx)        # a[n*i+j] = b[j]
        addl    $1, %ecx            # j++
        addl    $4, %edx            # edx = next element of a
        cmpl    %ecx, %ebx          # j == n?
        jne     .L25                #   if not, continue loop
.L26:
        popl    %ebx               # Finish
        popl    %esi
        popl    %ebp
        ret

Stephen Chong, Harvard University

Compiler generated code motion

14

    long j;
    int ni = n*i;
    for (j = 0; j < n; j++) {
        a[ni+j] = b[j];
    }

    long j;
    int ni = n*i;
    for (j = 0; j < n; j++) {
        a[ni+j] = b[j];
    }
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Strength reduction

•Key idea: replace expensive operations with cheaper ones

•E.g., reduce a multiplication inside a loop to an addition
•Addition of integers much faster than multiplication

15

/* sum column i of n x n array a */
int sum_col(int *a, int n, int i) {
    int s = 0;
    for (j = 0; j < n; j++) {
        s += a[n*j+i];
    }
    return s;
}

/* sum column i of n x n array a */
int sum_col(int *a, int n, int i) {
    int s = 0;
    int r = 0;
    for (j = 0; j < n; j++) {
        s += a[r+i];
        r += n;
    }
    return s;
}
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Share Common Subexpressions

•Key idea: reuse common 
portions of expressions

•Compilers often not very 
sophisticated in exploiting 
arithmetic properties

val[i*n + j]

n

i

j

/* Sum neighbors of i,j */
up =    val[(i-1)*n + j  ];
down =  val[(i+1)*n + j  ];
left =  val[i*n     + j-1];
right = val[i*n     + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up =    val[inj - n];
down =  val[inj + n];
left =  val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;
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Share Common Subexpressions

/* Sum neighbors of i,j */
up =    val[(i-1)*n + j  ];
down =  val[(i+1)*n + j  ];
left =  val[i*n     + j-1];
right = val[i*n     + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up =    val[inj - n];
down =  val[inj + n];
left =  val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

        imull   %eax, %esi
        leal    (%ebx,%esi), %esi
        leal    -1(%ecx), %edx
        imull   %eax, %edx
        addl    %ebx, %edx
        addl    $1, %ecx
        imull   %ecx, %eax
        addl    %eax, %ebx
        movl    (%edi,%ebx,4), %eax
        addl    (%edi,%edx,4), %eax
        movl    -4(%edi,%esi,4), %edx
        addl    4(%edi,%esi,4), %edx
        addl    %edx, %eax

        imull   %eax, %esi
        leal    (%ebx,%esi), %esi
        leal    -1(%ecx), %edx
        imull   %eax, %edx
        addl    %ebx, %edx
        addl    $1, %ecx
        imull   %ecx, %eax
        addl    %eax, %ebx
        movl    (%edi,%ebx,4), %eax
        addl    (%edi,%edx,4), %eax
        movl    -4(%edi,%esi,4), %edx
        addl    4(%edi,%esi,4), %edx
        addl    %edx, %eax

3 multiplications

        imull   %ecx, %edx
        addl    16(%ebp), %edx
        leal    0(,%edx,4), %edi
        movl    %edx, %esi
        subl    %ecx, %esi
        movl    -4(%ebx,%edi), %eax
        addl    (%ebx,%esi,4), %eax
        addl    %edx, %ecx
        movl    4(%ebx,%edi), %edx
        addl    (%ebx,%ecx,4), %edx
        addl    %edx, %eax

        imull   %ecx, %edx
        addl    16(%ebp), %edx
        leal    0(,%edx,4), %edi
        movl    %edx, %esi
        subl    %ecx, %esi
        movl    -4(%ebx,%edi), %eax
        addl    (%ebx,%esi,4), %eax
        addl    %edx, %ecx
        movl    4(%ebx,%edi), %edx
        addl    (%ebx,%ecx,4), %edx
        addl    %edx, %eax

1 multiplication
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Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors 

•Loop unrolling

•Tail recursion

•Summary
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•Converting a string to lower case:

•What's wrong (performance-wise) with this code?
Stephen Chong, Harvard University 19

Optimization Blocker: Procedure Calls

void lower(char *s) {
  int i;
  for (i = 0; i < mystrlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
}

/* Return length of string s */
size_t mystrlen(const char *s) {
    size_t length = 0;
    while (*s != '\0') {
        s++; 
        length++;
    }
    return length;
}
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Convert Loop To Goto Form

• mystrlen executed 
every iteration!

•mystrlen() performance
•Must scan string looking for 

null character.

•Overall performance, 
string of length n
•n calls to mystrlen
•Each call requires n accesses 

(i.e., go through entire string)

•Overall O(n2) performance

void lower(char *s)
{
   int i = 0;
   if (i >= mystrlen(s))
     goto done;
 loop:
   if (s[i] >= 'A' && s[i] <= 'Z')
       s[i] -= ('A' - 'a');
   i++;
   if (i < mystrlen(s))
     goto loop;
 done:
}
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Lower Case Conversion Performance

•O(n2)
•Quadratic performance 

•Time quadruples when we double the input string length
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How to improve performance?

•Code motion!
•Move call to mystrlen() outside of loop

•OK because result does not change from one iteration to another

void lower(char *s) {
  int i;
  for (i = 0; i < mystrlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
}

void lower(char *s)
{
  int i;
  int len = mystrlen(s);
  for (i = 0; i < len; i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] -= ('A' - 'a');
}
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Improved performance!

23
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Improved performance!

•Linear performance

24
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Optimization Blocker: Procedure Calls

• Why couldn’t compiler move mystrlen() out of  inner 
loop?

• The compiler treats procedure calls as a “black box” 
•Must be conservative!

• Procedure may be nondeterministic
• Does not return same value each time it is called with same inputs

• Output could depend on global state (not just its input parameters) 

• Procedure may have side effects
• Alters global state each time called
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Example: mystrlen with side effects

• Calling mystrlen once versus calling it n times has different behavior!

• (gcc does know about some “built in” functions, including strlen and 
other functions from the standard library. Can optimize knowing about 
the behavior of these functions)

26

int lencnt = 0;
size_t mystrlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
	 s++; length++;
    }
    lencnt += length;
    return length;
}

int lencnt = 0;
size_t mystrlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
	 s++; length++;
    }
    lencnt += length;
    return length;
}
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Potential remedies

•Do your own code motion
•Rewrite code to move procedure call outside of the inner loop

•Use the inline keyword
•Tells compiler that the function code can be inserted into the 

calling function

•Allows compiler to optimize across caller and callee

•Also done by default (for “simple” functions) when using gcc -O3  
(or use -finline-functions)

static inline size_t mystrlen(const char *s) {
    size_t length = 0;
    while (*s != '\0') {
        s++; length++;
    }
    return length;
}
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Optimization blocker: aliasing

•Are the two functions above equivalent?
•If so, twiddle2 looks more efficient. Compiler should 

optimize twiddle1 so it looks like twiddle2, right?

28

void twiddle1(int *xp, int *yp) {
    *xp += *yp;
    *xp += *yp;
}

void twiddle2(int *xp, int *yp) {
    *xp += 2* *yp;

}
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Optimization blocker: aliasing

• But what if xp and yp are equal?
• e.g., int foo = 42; twiddle1(&foo, &foo);
•twiddle1 computes:

• foo += foo;   // doubles foo
foo += foo;   // doubles foo again

•twiddle2 computes:
• foo += 2* foo; // triples foo

• Not equivalent!!!
29

void twiddle1(int *xp, int *yp) {
    *xp += *yp;
    *xp += *yp;
}

void twiddle2(int *xp, int *yp) {
    *xp += 2* *yp;

}
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Memory aliasing

•If two pointers point to the same memory 
location, they alias each other.

•Compiler must assume that pointers may alias 
each other
•Must be conservative!
•Severely limits optimizations

•Lesson: Reduce unnecessary memory accesses

30
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Reduce unnecessary memory accesses

•The following programs are not 
equivalent
•Why?

•prod_array1 must access 
memory repeatedly
•Compiler cannot remove these 

accesses

•prod_array2 can be 
compiled using a register for 
res
•Much more efficient

31

void prod_array1(int *a, int n,
                 int *dest) {
  int i;
  *dest = 1;
  for (i = 0; i < n; i++) {
    *dest = *dest * a[i];
  }
}	

void prod_array2(int *a, int n,
                 int *dest) {
  int i, res = 1;
  for (i = 0; i < n; i++) {
    res = res * a[i];
  }
  *dest = res;
}	
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Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors 

•Loop unrolling

•Tail recursion

•Summary
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Three kinds of parallelism

•Three kinds of parallelism supported by modern 
CPUs:
•Pipelining
•Superscalar
•Multicore
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Pipelining
http://arstechnica.com

/old/content/2004/09/pipelining-2.ars/4
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Superscalar processors

• CPU has multiple 
functional units

• Each can deal with 
different kinds of 
operations

• Some overlap, 
e.g., most functional 
units can do integer 
arithmetic

• Each functional unit has 
its own pipeline

•⇒ Multiple pipelines 

executing in parallel© 2010 Stephen Chong, Harvard University 30

Understanding modern processors

• Modern CPUs 
can execute 
multiple 
instructions 
simultaneously

• Multiple 
functional units 
on the chip

• Each functional 
unit responsible 
for different kind 
of operation

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instrs.

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File
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Superscalar processors

• In one cycle can issue 
different instructions 
to different functional 
units
•Hence in one cycle 

can complete more 
than one operation

•Thus, “superscalar”

• Not the same as 
multicore!

http://arstechnica.com
/old/content/2004/09/pipelining-2.ars/5
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Multicore processors

• Each chip contains multiple separate processor cores

• Each core can run completely different code

• To take advantage (in a single program) of multiple cores must 
write concurrent code. More on this later in course...
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Loop unrolling

•Reduce number of 
iterations of loop by 
doing more work each 
iteration
•Reduces number of loop 

index/comparison 
operations

•Further transformations 
can enable additional 
speedup.

39

int prod_array(int *a, int n) {
  int i, result=1;
  for (i = 0; i < n; i++) {
    result *= a[i];
  }
  return result;
}	

/* Note: assuming n is even!  */
int prod_array2(int *a, int n) {
  int i, tmp1=1, tmp2=1;
  for (i = 0; i < n; i+=2) {
    result *= a[i];
    result *= a[i+1];
  }
  return result;
}	
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Enhancing parallelism

•In unrolled version, 
multiplications must 
occur in sequence
•Why?

•What if we used two 
accumulators?
•No dependency between 

two multiplications
•Can be run in parallel

40

/* Note: assuming n is even!  */
int prod_array2(int *a, int n) {
  int i, tmp1=1, tmp2=1;
  for (i = 0; i < n; i+=2) {
    tmp1 *= a[i];
    tmp2 *= a[i+1];
  }
  return tmp1 * tmp2;
}	

/* Note: assuming n is even!  */
int prod_array2(int *a, int n) {
  int i, result=1;
  for (i = 0; i < n; i+=2) {
    result *= a[i];
    result *= a[i+1];
  }
  return result;
}	
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Visualizing unrolling

•In original loop, 
need to stall 
pipeline each 
iteration due to 
dependencies

41

Time

addl $1, %edx
imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

addl $1, %edx
imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

    # Original loop
    .L77:
        imull   (%ebx,%edx,4), %ecx
        addl    $1, %edx
        cmpl    %edx, %esi
        jg     .L77
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Visualizing unrolling

•Still need to stall pipeline each iteration, but 
each iteration does 2 multiplications!

•More parallelism for each iteration
42

Time

addl $2, %edx

imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

    # Unrolled loop
    .L77:
        imull   (%ebx,%edx,4), %ecx
        imull   4(%ebx, %edx, 4), %eax
        addl    $2, %edx
        cmpl    %edx, %esi
        jg     .L77

imull 4(%ebx,%edx,4),%ecx
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What does the stack look like?

•Suppose we called factorial(1, 10)
•What does the stack look like?

44

int factorial(int fact_so_far, int n) {
  if (n == 1) return fact_so_far;
  return factorial(fact_so_far*n, n-1);
}	

fact_so_far=1

n=10

fact_so_far=10

n=9

⋮

⋮
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What does the stack look like?

• Result of function returned in %eax
• In base case, we moved 
fact_so_far arg off stack and 
into %eax

• In the recursive case, after the call 
instruction, result is already in %eax
•No further computation to do!
•Just need to clean up stack

45

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        movl    %edx, 4(%esp)
        movl    %eax, (%esp)
        call    factorial
.L4:
        leave
        ret

int factorial(int fact_so_far, int n) {
  if (n == 1) return fact_so_far;
  return factorial(fact_so_far*n, n-1);
}	
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Tail recursion

• Function factorial is tail recursive
• A special case of recursion
• The last thing it does is call itself, and 

return the result
• No more computation to be done once 

the recursive call finishes

• No need for stack frame once 
recursive call finishes

• So why bother allocating a new stack 
frame for the recursive call?

46

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        movl    %edx, 4(%esp)
        movl    %eax, (%esp)
        call    factorial
.L4:
        leave
        ret

int factorial(int fact_so_far, int n) {
  if (n == 1) return fact_so_far;
  return factorial(fact_so_far*n, n-1);
}	
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Tail-call elimination

• Tail-call elimination removes the tail call
• Converts it to a jmp
• Fewer stack frames, fewer function call overhead

47

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
.L5:
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        jmp     .L5
.L4:
        leave
        ret

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        movl    %edx, 4(%esp)
        movl    %eax, (%esp)
        call    factorial
.L4:
        leave
        ret

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        movl    %edx, 4(%esp)
        movl    %eax, (%esp)
        call    factorial
.L4:
        leave
        ret

factorial:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $12, %esp
        movl    8(%ebp), %eax
        movl    12(%ebp), %edx
.L5:
        cmpl    $1, %edx
        je     .L4
        imull   %edx, %eax
        subl    $1, %edx
        jmp     .L5
.L4:
        leave
        ret
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Finding tail recursion

•gcc pretty good at finding tail recursion
•Natural implementation of factorial is not tail 

recursive

•After the recursive call returns, it performs 
computation on the result

•However, gcc compiles it to machine code with 
a jmp instead of a call

48

int fact(int n) {
  if (n == 1) return 1;
  return n*fact(n-1);
}	
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Optimization recap

• Write code to help the compiler, and CPU, do their jobs well.
• Remember: The compiler has to be conservative, but you might know better.

• High-level design
• Choose appropriate algorithms and data structures

• Basic coding principles
• Avoid optimization blockers

• Eliminate unnecessary function calls and memory references

• Low-level optimization
• Unroll loops to reduce overhead and enable further optimizations

• Find ways to increase instruction-level parallelism

• Code motion:
• Move constant expressions outside of loops

• Especially in the presence of function calls

• Strength reduction
• Use less expensive operations/functions when possible (Though, most compilers will do this for you!)
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Caveats

•Does this mean you should write crazy, convoluted, 
repetitive, but high performing code?

•Probably not.

•Need to balance maintainability/readability with 
performance

•Always clearly comment when you are doing something 
funky
•State your assumptions: someone may change your code later 

and break it it subtle ways

50
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Caveats

51

There is no doubt that the grail of efficiency leads to abuse. Programmers waste 
enormous amounts of time thinking about, or worrying about, the speed of 
noncritical parts of their programs, and these attempts at efficiency actually 
have a strong negative impact when debugging and maintenance are 
considered. We should forget about small efficiencies, say about 97% of the 
time: premature optimization is the root of all evil.

Donald Knuth

Yet we should not pass up our opportunities in that critical 3%.

Structured Programming with goto Statements
Computing Surveys, Vol 6, No 4, December 1974
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How to find the 3%...

•Identifying and eliminating performance 
bottlenecks
•Use a program profiler to find out where your program 

is spending its time
• e.g., gprof

•Speed up of program depends on how much you 
improved performance of component, and how 
significant component is

52
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Performance lab

•In a few weeks,we will release a performance 
lab
•Optional lab, to explore performance improvement
•Not part of course assessment
•More details coming...
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