
Program Optimization

CS61, Lecture 9
Prof. Stephen Chong
September 29, 2011

Stephen Chong, Harvard University

Announcements

•Homework 3 (the Buffer Bomb) due in one week

•There will be no section on Columbus Day (Monday Oct
10)
•Section TFs will reschedule, and info posted on website

•Remember: you can attend any section

2

Stephen Chong, Harvard University

CISC vs RISC

•CISC (“sisk”): Complex Instruction Set Computer
•RISC (“risk”): Reduced Instruction Set Computer
•Different philosophies regarding the design (and

implementation) of ISAs

3

Stephen Chong, Harvard University

CISC vs RISC

•CISC (“sisk”): Complex Instruction Set Computer
•Historically first
•Large instruction sets (x86 has several hundred)
•Specialized instructions for high-level tasks

• Instructions that are closer to what applications are wanting to
do

• Can provide hardware support for application-specific
instructions
‣ E.g., x86 contains instructions such as LOOPZ label, which decrements

%cx (without modifying flags) and jumps to label if %cx is non-zero

•Presents a clean interface to programmer
• Hides implementation details such as pipelining

4

Stephen Chong, Harvard University

CISC vs RISC

• RISC (“risk”): Reduced Instruction Set Computer
• Philosophy developed in early 1980s

• Small, simple, instruction sets (typically <100)
• E.g., may have only base+displacement memory addressing

• E.g., memory access only via load and store; ALU operations need register
operands

• E.g., no condition codes, only explicit test instructions

• Often fixed length encodings for instructions

• Leads to simple, efficient implementation

• Reveals implementation details to programmer (e.g., pipe-lining)
• E.g., certain instruction sequences may be prohibited

• E.g., jump instruction may not take effect until after following instruction
‣ Compiler must be aware of these restrictions, and can use them to optimize performance

• ARM (originally “Acorn RISC Machine”) widely used in embedded devices

5

Stephen Chong, Harvard University

Modern computers

•In most settings, neither CISC nor RISC clearly better
•RISC machines

•Exposing implementation details made it difficult to use
them, and difficult to evolve the ISA

•Added more instructions

•CISC machines
•Take advantage of RISC-like pipelines

• Essentially translate CISC instructions into simpler RISC-like
instructions

• E.g., addl %eax, 8(%esp) broken up into a load from
memory, followed by an addition, followed by a store to memory

6

Stephen Chong, Harvard University

Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors

•Loop unrolling

•Tail recursion

•Summary
7

Stephen Chong, Harvard University 8

Getting the best performance

• There’s more to performance than asymptotic complexity!

• Constant factors matter too
• Easily see 10×–100× difference depending on how code is written

• Must optimize at multiple levels:
• algorithm structure (locality, instruction level parallelism, ...)

• data representations (e.g., structs vs arrays)

• coding style (e.g., unnecessary procedure calls, unrolling, reordering, ...)

• Must understand underlying system to optimize performance
• How programs are compiled and executed

• How to measure program performance and identify bottlenecks

• How to improve performance while maintaining code modularity and
generality

Stephen Chong, Harvard University 9

Optimizing compilers (e.g., gcc)

•Compilers do a lot of optimization when generating
machine code

•Use optimization flags when compiling
•Default is no optimization (-O0)

•Good choices for gcc: -O2, -O3, -march=xxx, -m64
•Try different flags and maybe different compilers

Stephen Chong, Harvard University 10

Optimizing compilers (e.g., gcc)

• Compilers are good at: mapping programs to machines
• register allocation

• instruction selection and ordering (scheduling)

• dead code elimination

• eliminating minor inefficiencies

• Compilers are not good at: improving asymptotic efficiency
• up to programmer to select best overall algorithm

• big-O savings are (often) more important than constant factors

• but constant factors also matter

• Compilers are not good at: overcoming “optimization blockers”
• potential memory aliasing

• potential procedure side-effects

Stephen Chong, Harvard University

Limitations of Optimizing Compilers

• When in doubt, the compiler must be conservative

• Must not change program behavior under any possible condition
• Often prevents it from making optimizations when would only affect behavior

under pathological conditions.

• Behavior that may be obvious to the programmer can be obfuscated
by languages and coding styles
• e.g., data ranges may be more limited than variable types suggest

• Most analysis is performed only within procedures
• Whole-program analysis is too expensive in most cases

• Not amenable to modular compilation

• Code analysis generally based only on static information
• That is, whatever it can determine at compile time

• Difficult (in general, undecidable) to determine run-time, or dynamic, behavior

11

Stephen Chong, Harvard University

Machine-independent optimizations

•Some simple optimizations, regardless of specific
machine or compiler
•Code motion

•Strength reduction
•Common subexpressions

•For some instances of these optimizations, almost
all compilers will perform them

•For other instances, very difficult for a compiler to
perform them
•You need to understand why

12

Stephen Chong, Harvard University

Code motion

•Key idea: Move code to reduce the number of
times it executes

•Most common case: move code out of loop
•E.g.

•Moving code means n-1 fewer multiplications!

13

void set_row(long *a, long *b,
 long i, long n)
{
 long j;

 for (j = 0; j < n; j++) {
 a[n*i+j] = b[j];
 }
}

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++) {
 a[ni+j] = b[j];
 }

void set_row(long *a, long *b,
 long i, long n)
{
 long j;

 for (j = 0; j < n; j++) {
 a[n*i+j] = b[j];
 }
}

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++) {
 a[ni+j] = b[j];
 }

set_row:
 pushl %ebp # Setup
 movl %esp, %ebp
 pushl %esi
 pushl %ebx
 movl 12(%ebp), %esi # esi = b
 movl 20(%ebp), %ebx # ebx = n
 testl %ebx, %ebx # is n <= 0?
 jle .L26 # return
 movl %ebx, %edx # edx = n
 imull 16(%ebp), %edx # edx = n*i
 movl 8(%ebp), %eax # eax = a
 leal (%eax,%edx,4), %edx # edx = &(a[n*i])
 movl $0, %ecx # ecx = 0
.L25:
 movl (%esi,%ecx,4), %eax # eax = &(b[j])
 movl %eax, (%edx) # a[n*i+j] = b[j]
 addl $1, %ecx # j++
 addl $4, %edx # edx = next element of a
 cmpl %ecx, %ebx # j == n?
 jne .L25 # if not, continue loop
.L26:
 popl %ebx # Finish
 popl %esi
 popl %ebp
 ret

set_row:
 pushl %ebp # Setup
 movl %esp, %ebp
 pushl %esi
 pushl %ebx
 movl 12(%ebp), %esi # esi = b
 movl 20(%ebp), %ebx # ebx = n
 testl %ebx, %ebx # is n <= 0?
 jle .L26 # return
 movl %ebx, %edx # edx = n
 imull 16(%ebp), %edx # edx = n*i
 movl 8(%ebp), %eax # eax = a
 leal (%eax,%edx,4), %edx # edx = &(a[n*i])
 movl $0, %ecx # ecx = 0
.L25:
 movl (%esi,%ecx,4), %eax # eax = &(b[j])
 movl %eax, (%edx) # a[n*i+j] = b[j]
 addl $1, %ecx # j++
 addl $4, %edx # edx = next element of a
 cmpl %ecx, %ebx # j == n?
 jne .L25 # if not, continue loop
.L26:
 popl %ebx # Finish
 popl %esi
 popl %ebp
 ret

Stephen Chong, Harvard University

Compiler generated code motion

14

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++) {
 a[ni+j] = b[j];
 }

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++) {
 a[ni+j] = b[j];
 }

Stephen Chong, Harvard University

Strength reduction

•Key idea: replace expensive operations with cheaper ones

•E.g., reduce a multiplication inside a loop to an addition
•Addition of integers much faster than multiplication

15

/* sum column i of n x n array a */
int sum_col(int *a, int n, int i) {
 int s = 0;
 for (j = 0; j < n; j++) {
 s += a[n*j+i];
 }
 return s;
}

/* sum column i of n x n array a */
int sum_col(int *a, int n, int i) {
 int s = 0;
 int r = 0;
 for (j = 0; j < n; j++) {
 s += a[r+i];
 r += n;
 }
 return s;
}

Stephen Chong, Harvard University 16

Share Common Subexpressions

•Key idea: reuse common
portions of expressions

•Compilers often not very
sophisticated in exploiting
arithmetic properties

val[i*n + j]

n

i

j

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

Stephen Chong, Harvard University 17

Share Common Subexpressions

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

 imull %eax, %esi
 leal (%ebx,%esi), %esi
 leal -1(%ecx), %edx
 imull %eax, %edx
 addl %ebx, %edx
 addl $1, %ecx
 imull %ecx, %eax
 addl %eax, %ebx
 movl (%edi,%ebx,4), %eax
 addl (%edi,%edx,4), %eax
 movl -4(%edi,%esi,4), %edx
 addl 4(%edi,%esi,4), %edx
 addl %edx, %eax

 imull %eax, %esi
 leal (%ebx,%esi), %esi
 leal -1(%ecx), %edx
 imull %eax, %edx
 addl %ebx, %edx
 addl $1, %ecx
 imull %ecx, %eax
 addl %eax, %ebx
 movl (%edi,%ebx,4), %eax
 addl (%edi,%edx,4), %eax
 movl -4(%edi,%esi,4), %edx
 addl 4(%edi,%esi,4), %edx
 addl %edx, %eax

3 multiplications

 imull %ecx, %edx
 addl 16(%ebp), %edx
 leal 0(,%edx,4), %edi
 movl %edx, %esi
 subl %ecx, %esi
 movl -4(%ebx,%edi), %eax
 addl (%ebx,%esi,4), %eax
 addl %edx, %ecx
 movl 4(%ebx,%edi), %edx
 addl (%ebx,%ecx,4), %edx
 addl %edx, %eax

 imull %ecx, %edx
 addl 16(%ebp), %edx
 leal 0(,%edx,4), %edi
 movl %edx, %esi
 subl %ecx, %esi
 movl -4(%ebx,%edi), %eax
 addl (%ebx,%esi,4), %eax
 addl %edx, %ecx
 movl 4(%ebx,%edi), %edx
 addl (%ebx,%ecx,4), %edx
 addl %edx, %eax

1 multiplication

Stephen Chong, Harvard University

Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors

•Loop unrolling

•Tail recursion

•Summary
18

•Converting a string to lower case:

•What's wrong (performance-wise) with this code?
Stephen Chong, Harvard University 19

Optimization Blocker: Procedure Calls

void lower(char *s) {
 int i;
 for (i = 0; i < mystrlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

/* Return length of string s */
size_t mystrlen(const char *s) {
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

Stephen Chong, Harvard University 20

Convert Loop To Goto Form

• mystrlen executed
every iteration!

•mystrlen() performance
•Must scan string looking for

null character.

•Overall performance,
string of length n
•n calls to mystrlen
•Each call requires n accesses

(i.e., go through entire string)

•Overall O(n2) performance

void lower(char *s)
{
 int i = 0;
 if (i >= mystrlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < mystrlen(s))
 goto loop;
 done:
}

0

20

40

60

80

100

120

140

160

180

20
K

60
K

10
0K

14
0K

18
0K

22
0K

26
0K

30
0K

34
0K

38
0K

42
0K

46
0K

50
0K

Stephen Chong, Harvard University 21

Lower Case Conversion Performance

•O(n2)
•Quadratic performance

•Time quadruples when we double the input string length

Ti
m

e
(s

ec
on

ds
)

String Length

Stephen Chong, Harvard University 22

How to improve performance?

•Code motion!
•Move call to mystrlen() outside of loop

•OK because result does not change from one iteration to another

void lower(char *s) {
 int i;
 for (i = 0; i < mystrlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

void lower(char *s)
{
 int i;
 int len = mystrlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Stephen Chong, Harvard University

Improved performance!

23

0

20

40

60

80

100

120

140

160

180

20
K

60
K

10
0K

14
0K

18
0K

22
0K

26
0K

30
0K

34
0K

38
0K

42
0K

46
0K

50
0K

Ti
m

e
(s

ec
on

ds
)

String Length

Improved
version

Quadratic
version

Stephen Chong, Harvard University

Improved performance!

•Linear performance

24

0

0.002

0.004

0.006

0.008

0.01

20
K

60
K

10
0K

14
0K

18
0K

22
0K

26
0K

30
0K

34
0K

38
0K

42
0K

46
0K

50
0K

Ti
m

e
(s

ec
on

ds
)

String Length

Stephen Chong, Harvard University 25

Optimization Blocker: Procedure Calls

• Why couldn’t compiler move mystrlen() out of inner
loop?

• The compiler treats procedure calls as a “black box”
•Must be conservative!

• Procedure may be nondeterministic
• Does not return same value each time it is called with same inputs

• Output could depend on global state (not just its input parameters)

• Procedure may have side effects
• Alters global state each time called

Stephen Chong, Harvard University

Example: mystrlen with side effects

• Calling mystrlen once versus calling it n times has different behavior!

• (gcc does know about some “built in” functions, including strlen and
other functions from the standard library. Can optimize knowing about
the behavior of these functions)

26

int lencnt = 0;
size_t mystrlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
	 s++; length++;
 }
 lencnt += length;
 return length;
}

int lencnt = 0;
size_t mystrlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
	 s++; length++;
 }
 lencnt += length;
 return length;
}

Stephen Chong, Harvard University 27

Potential remedies

•Do your own code motion
•Rewrite code to move procedure call outside of the inner loop

•Use the inline keyword
•Tells compiler that the function code can be inserted into the

calling function

•Allows compiler to optimize across caller and callee

•Also done by default (for “simple” functions) when using gcc -O3
(or use -finline-functions)

static inline size_t mystrlen(const char *s) {
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 return length;
}

Stephen Chong, Harvard University

Optimization blocker: aliasing

•Are the two functions above equivalent?
•If so, twiddle2 looks more efficient. Compiler should

optimize twiddle1 so it looks like twiddle2, right?

28

void twiddle1(int *xp, int *yp) {
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int *xp, int *yp) {
 xp += 2 *yp;

}

Stephen Chong, Harvard University

Optimization blocker: aliasing

• But what if xp and yp are equal?
• e.g., int foo = 42; twiddle1(&foo, &foo);
•twiddle1 computes:

• foo += foo; // doubles foo
foo += foo; // doubles foo again

•twiddle2 computes:
• foo += 2* foo; // triples foo

• Not equivalent!!!
29

void twiddle1(int *xp, int *yp) {
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int *xp, int *yp) {
 xp += 2 *yp;

}

Stephen Chong, Harvard University

Memory aliasing

•If two pointers point to the same memory
location, they alias each other.

•Compiler must assume that pointers may alias
each other
•Must be conservative!
•Severely limits optimizations

•Lesson: Reduce unnecessary memory accesses

30

Stephen Chong, Harvard University

Reduce unnecessary memory accesses

•The following programs are not
equivalent
•Why?

•prod_array1 must access
memory repeatedly
•Compiler cannot remove these

accesses

•prod_array2 can be
compiled using a register for
res
•Much more efficient

31

void prod_array1(int *a, int n,
 int *dest) {
 int i;
 *dest = 1;
 for (i = 0; i < n; i++) {
 *dest = *dest * a[i];
 }
}	

void prod_array2(int *a, int n,
 int *dest) {
 int i, res = 1;
 for (i = 0; i < n; i++) {
 res = res * a[i];
 }
 *dest = res;
}	

Stephen Chong, Harvard University

Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors

•Loop unrolling

•Tail recursion

•Summary
32

Stephen Chong, Harvard University 33

Three kinds of parallelism

•Three kinds of parallelism supported by modern
CPUs:
•Pipelining
•Superscalar
•Multicore

Stephen Chong, Harvard University 34

Pipelining
http://arstechnica.com

/old/content/2004/09/pipelining-2.ars/4

Stephen Chong, Harvard University 35

Superscalar processors

• CPU has multiple
functional units

• Each can deal with
different kinds of
operations

• Some overlap,
e.g., most functional
units can do integer
arithmetic

• Each functional unit has
its own pipeline

•⇒ Multiple pipelines

executing in parallel© 2010 Stephen Chong, Harvard University 30

Understanding modern processors

• Modern CPUs
can execute
multiple
instructions
simultaneously

• Multiple
functional units
on the chip

• Each functional
unit responsible
for different kind
of operation

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instrs.

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Stephen Chong, Harvard University 36

Superscalar processors

• In one cycle can issue
different instructions
to different functional
units
•Hence in one cycle

can complete more
than one operation

•Thus, “superscalar”

• Not the same as
multicore!

http://arstechnica.com
/old/content/2004/09/pipelining-2.ars/5

Stephen Chong, Harvard University 37

Multicore processors

• Each chip contains multiple separate processor cores

• Each core can run completely different code

• To take advantage (in a single program) of multiple cores must
write concurrent code. More on this later in course...

Stephen Chong, Harvard University

Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors

•Loop unrolling

•Tail recursion

•Summary
38

Stephen Chong, Harvard University

Loop unrolling

•Reduce number of
iterations of loop by
doing more work each
iteration
•Reduces number of loop

index/comparison
operations

•Further transformations
can enable additional
speedup.

39

int prod_array(int *a, int n) {
 int i, result=1;
 for (i = 0; i < n; i++) {
 result *= a[i];
 }
 return result;
}	

/* Note: assuming n is even! */
int prod_array2(int *a, int n) {
 int i, tmp1=1, tmp2=1;
 for (i = 0; i < n; i+=2) {
 result *= a[i];
 result *= a[i+1];
 }
 return result;
}	

Stephen Chong, Harvard University

Enhancing parallelism

•In unrolled version,
multiplications must
occur in sequence
•Why?

•What if we used two
accumulators?
•No dependency between

two multiplications
•Can be run in parallel

40

/* Note: assuming n is even! */
int prod_array2(int *a, int n) {
 int i, tmp1=1, tmp2=1;
 for (i = 0; i < n; i+=2) {
 tmp1 *= a[i];
 tmp2 *= a[i+1];
 }
 return tmp1 * tmp2;
}	

/* Note: assuming n is even! */
int prod_array2(int *a, int n) {
 int i, result=1;
 for (i = 0; i < n; i+=2) {
 result *= a[i];
 result *= a[i+1];
 }
 return result;
}	

Stephen Chong, Harvard University

Visualizing unrolling

•In original loop,
need to stall
pipeline each
iteration due to
dependencies

41

Time

addl $1, %edx
imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

addl $1, %edx
imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

 # Original loop
 .L77:
 imull (%ebx,%edx,4), %ecx
 addl $1, %edx
 cmpl %edx, %esi
 jg .L77

Stephen Chong, Harvard University

Visualizing unrolling

•Still need to stall pipeline each iteration, but
each iteration does 2 multiplications!

•More parallelism for each iteration
42

Time

addl $2, %edx

imull (%ebx,%edx,4),%ecx

cmpl %edx, %esi
jg .L70

 # Unrolled loop
 .L77:
 imull (%ebx,%edx,4), %ecx
 imull 4(%ebx, %edx, 4), %eax
 addl $2, %edx
 cmpl %edx, %esi
 jg .L77

imull 4(%ebx,%edx,4),%ecx

Stephen Chong, Harvard University

Today

•Program optimization
•Overview

•Code motion

•Strength reduction

•Common subexpressions

•Optimization blockers
• Procedure calls

• Aliasing

•Understanding modern processors

•Loop unrolling

•Tail recursion

•Summary
43

Stephen Chong, Harvard University

What does the stack look like?

•Suppose we called factorial(1, 10)
•What does the stack look like?

44

int factorial(int fact_so_far, int n) {
 if (n == 1) return fact_so_far;
 return factorial(fact_so_far*n, n-1);
}	

fact_so_far=1

n=10

fact_so_far=10

n=9

⋮

⋮

Stephen Chong, Harvard University

What does the stack look like?

• Result of function returned in %eax
• In base case, we moved
fact_so_far arg off stack and
into %eax

• In the recursive case, after the call
instruction, result is already in %eax
•No further computation to do!
•Just need to clean up stack

45

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 movl %edx, 4(%esp)
 movl %eax, (%esp)
 call factorial
.L4:
 leave
 ret

int factorial(int fact_so_far, int n) {
 if (n == 1) return fact_so_far;
 return factorial(fact_so_far*n, n-1);
}	

Stephen Chong, Harvard University

Tail recursion

• Function factorial is tail recursive
• A special case of recursion
• The last thing it does is call itself, and

return the result
• No more computation to be done once

the recursive call finishes

• No need for stack frame once
recursive call finishes

• So why bother allocating a new stack
frame for the recursive call?

46

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 movl %edx, 4(%esp)
 movl %eax, (%esp)
 call factorial
.L4:
 leave
 ret

int factorial(int fact_so_far, int n) {
 if (n == 1) return fact_so_far;
 return factorial(fact_so_far*n, n-1);
}	

Stephen Chong, Harvard University

Tail-call elimination

• Tail-call elimination removes the tail call
• Converts it to a jmp
• Fewer stack frames, fewer function call overhead

47

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
.L5:
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 jmp .L5
.L4:
 leave
 ret

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 movl %edx, 4(%esp)
 movl %eax, (%esp)
 call factorial
.L4:
 leave
 ret

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 movl %edx, 4(%esp)
 movl %eax, (%esp)
 call factorial
.L4:
 leave
 ret

factorial:
 pushl %ebp
 movl %esp, %ebp
 subl $12, %esp
 movl 8(%ebp), %eax
 movl 12(%ebp), %edx
.L5:
 cmpl $1, %edx
 je .L4
 imull %edx, %eax
 subl $1, %edx
 jmp .L5
.L4:
 leave
 ret

Stephen Chong, Harvard University

Finding tail recursion

•gcc pretty good at finding tail recursion
•Natural implementation of factorial is not tail

recursive

•After the recursive call returns, it performs
computation on the result

•However, gcc compiles it to machine code with
a jmp instead of a call

48

int fact(int n) {
 if (n == 1) return 1;
 return n*fact(n-1);
}	

Stephen Chong, Harvard University 49

Optimization recap

• Write code to help the compiler, and CPU, do their jobs well.
• Remember: The compiler has to be conservative, but you might know better.

• High-level design
• Choose appropriate algorithms and data structures

• Basic coding principles
• Avoid optimization blockers

• Eliminate unnecessary function calls and memory references

• Low-level optimization
• Unroll loops to reduce overhead and enable further optimizations

• Find ways to increase instruction-level parallelism

• Code motion:
• Move constant expressions outside of loops

• Especially in the presence of function calls

• Strength reduction
• Use less expensive operations/functions when possible (Though, most compilers will do this for you!)

Stephen Chong, Harvard University

Caveats

•Does this mean you should write crazy, convoluted,
repetitive, but high performing code?

•Probably not.

•Need to balance maintainability/readability with
performance

•Always clearly comment when you are doing something
funky
•State your assumptions: someone may change your code later

and break it it subtle ways

50

Stephen Chong, Harvard University

Caveats

51

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are
considered. We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil.

Donald Knuth

Yet we should not pass up our opportunities in that critical 3%.

Structured Programming with goto Statements
Computing Surveys, Vol 6, No 4, December 1974

Stephen Chong, Harvard University

How to find the 3%...

•Identifying and eliminating performance
bottlenecks
•Use a program profiler to find out where your program

is spending its time
• e.g., gprof

•Speed up of program depends on how much you
improved performance of component, and how
significant component is

52

Stephen Chong, Harvard University

Performance lab

•In a few weeks,we will release a performance
lab
•Optional lab, to explore performance improvement
•Not part of course assessment
•More details coming...

53

