
11/1/16 CS61 Fall 2016 1 1

A final evil process and fork

•  Topics
•  The perils of recursion
•  Creating new processes: fork

•  Learning Objectives:
•  Explain the impact of recursion on memory consumption
•  Design ways to limit a process’s stack consumption.
•  Explain what the fork system call does from an application

programming perspective.
•  Explain what the fork system call does from the operating

system perspective.

Recursion: Friend or foe?
unsigned f_helper(unsigned i);
unsigned f(unsigned i) {
 if (i == 0)
 return i;
 else
 return f_helper(i) + i;
}
unsigned f_helper(unsigned i) {
 return f(i - 1);
}
void process_main(void) {
 app_printf(0, "Hello from process %d\n", sys_getpid());
 for (unsigned i = 0; i < 1000; ++i)
 app_printf(0, "f(%u) == %u\n", i, f(i));
spinloop: goto spinloop;
}

11/1/16 CS61 Fall 2016
2

Screen capture

•  The program we just looked at is in p-recurse.c.
•  What happens when we run it?
•  How can we fix it?

11/1/16 CS61 Fall 2016 3

Where do Processes Come From?

•  How does Weensy create processes?

11/1/16 CS61 Fall 2016 4

Where do Processes Come From?

•  How does Weensy create processes?
•  Hand craft the process
•  Create a process structure (struct proc).
•  Create an address space.
•  Load the program into the address space.

11/1/16 CS61 Fall 2016 5

Where do Processes Come From?

•  How does Weensy create processes?
•  Hand craft the process
•  Create a process structure (struct proc).
•  Create an address space.
•  Load the program into the address space.

•  How do real operating systems create processes?

11/1/16 CS61 Fall 2016 6

Process Creation models

•  There are two models of process creation:
1.  Single system call to create a new process (Windows

model).
CreateProcess(name, cmdline, processAttrs,
threadAttrs, inheritHandles, flags, env, cwd,
startupInfo, procInfo);

2.  Copy an existing process (UNIX fork/exec model)
fork();

11/1/16 CS61 Fall 2016 7

Tradeoffs

Create process anew

11/1/16 CS61 Fall 2016 8

Copy process

Tradeoffs

Create process anew

+ Let’s you run whatever
program you want.

-  Complicated call –

includes all setup
parameters.

11/1/16 CS61 Fall 2016 9

Copy process

-  Requires another way
to run a different
program.

+ Really simple call –
setup can be done in the
process(es) themselves.

- How do you distinguish
the new/old processes?

11/1/16 CS61 Fall 2016 10

11/1/16 CS61 Fall 2016 11

Creating new processes: fork

•  System call that copies the calling process, creating a
second process that is identical (in all but one regard)
to the process that called fork.

•  We refer to the calling process as the parent and the
new process as the child.

•  On return from successful fork:
•  Parent: return value is the pid of the child process.
•  Child: return value is 0.

•  If the fork fails:
•  No child process created.
•  Parent gets return value of -1 (and errno is set).

11/1/16 CS61 Fall 2016 12

Programming with fork

#include <unistd.h>
pid_t ret_pid;

ret_pid = fork();
switch (ret_pid){

case 0:
/* I am the child. */
break;

case -1:
/* Something bad happened. */
break;

default:
/*
 * I am the parent and my child’s
 * pid is ret_pid.
 */
break;

 }

11/1/16 CS61 Fall 2016 13

Full Circle: How do you implement fork?

•  What does it mean to copy a process?
•  We have to think about the different parts of a process –

which ones do we copy?
•  Stack?
•  Heap?
•  Data?
•  Text?
•  Page tables?
•  Registers?
•  PID?
•  Status?

11/1/16 CS61 Fall 2016 14

Screen Capture

•  Let’s run fork.
•  What will an strace look like?

•  Let’s run fork2.c.
•  How many processes will be created?

•  And of course we should run forkbomb.c.
•  What should it do?
•  If you were the OS, what would you do?

11/1/16 CS61 Fall 2016 15

