
CS 61 Scribe Notes

Andy Shi

Thursday, October 31, 2013

1 Announcements

1. The SEAS server hosting the bomb is crashing. If you still need to use late days for the bomb,
please inform the staff.

2. Eddie is traveling next week, so there will be a surprise lecturer. Will talk more about virtual
memory and what it’s like to do research in systems.

3. If you do an update on your lectures repository, there are a number of branches v01, v02, v03,
etc. There is a branches file in os01 which describes the contents of the branches. Branches
are the code we walk through in class. Use git checkout -b origin/v02 for example to
access the branches.

2 Review—Process Isolation

• One of the first things the attacker did to break process isolation was to enter an infinite loop.
What did he actually do?

The OS is supposed to share the resources, such as CPU Time, memory, disk, screen, etc.
robustly and fairly for all the processes being run. However, the attacker monopolized CPU
time.

Recall: a process is an application program in execution.

Response: The white-hat character introduced a timer interrupt to regain the control of the
CPU—such a device prevents CPU monopolization.

• The second attack: The attacker used a cli instruction to stop interrupts. This is an inap-
propriate use of the interrupt hardware.

Response: The kernel stopped the process from making the attack by reducing the process’s
privilege. The hardware (processor) makes sure the process with insufficient privilege cannot
access interrupt hardware.

• Third attack: inappropriate modification of kernel memory.

Response: We used the virtual memory system to protect the kernel memory from inappro-
priate access.

1

Andy Shi CS 61 Scribe Notes October 31, 2013

• Each attack was on a specific part of the system. The response was a cooperative effort
from the OS/kernel and the hardware to prevent the process from executing the attack.
Modern OSes should be secure from such attacks, but for example Mac OS 9 didn’t have such
protection mechanisms.

• Rely on fundamental concepts of the processor and OS. Privilege: helps distinguish “safe” and
“dangerous” hardware operations. Dangerous operations may only be executed by privileged
code. We need to tell the hardware whether the currently running code is privileged—this
information is stored in a special register (not like %eax, which can be modified by the process
at will).

3 Privilege and Exceptional Control Transfer

• Question: is privileged a boolean? In x86, privilege is stored in the lower two bits of a register
called %cs. Four possible values:

0: Kernel privilege (has as much privilege as the kernel, full control of machine possible).

3: Process privilege.

1 and 2 are not used—depreciated. Virtual machines used to try and run at 1 and 2 but not
anymore.

• How can we confirm this? Use gdb on a CS61 program, break at main, info registers. Normal
programs will run at privilege 3, programs in the os01 directory will run at privilege 0.

• Aside: the %gs register is occasionally used to store things like canaries for stack smashing protection.

• Aside: When you run something in sudo, you run at root privilege, which is still privilege 3. However,
there are escape hatches that allow processes with root privilege to access files/resources that normal
processes cannot. THe program is still run at normal privilege (level 3) because it can still crash.

• How can we communicate across privilege boundaries? How can the process ask the kernel
to do something, and how can the kernel drop privilege and run a process? Can the process
just call kernel functions, like sys_yield()? No, we don’t want the user process to access
arbitrary parts of memory. More significant problem: the kernel contains a lot of code, and
not all of it is meant to respond to user requests. User processes should not be allowed to do
things like set its instruction pointer to the kernel code that disables interrupts, which would
be bad. The process is only allowed to enter the kernel at fixed entry points.

• Process → kernel: The kernel installs an exception vector. It’s an array of entry points for
exceptional control transfers. A special call mechanism is set up to call these system calls—the
instruction int $N activates element N of the exception vector, switches to kernel privilege,
stores %esp, %eip, %cs on kernel stack. The memory for the exception vector is in the kernel.
There is another x86 instruction, lidt which sets the initial value of the exception vector.
Look in k-hardware.c to see an example.

• Now, an int call is run, and kernel wants to return to the process. How does a conventional
process return? The return address is stored on the stack. But for exceptional control transfer
calls, the kernel cannot trust the user’s stack. The kernel needs to register with the processor
a special stack location to store the return address of the call. The stack location also gets a
complete copy of all the values of the registers.

2

Andy Shi CS 61 Scribe Notes October 31, 2013

• The return address and the old value of %eip is stored on the stack so we know where to go
to. The processor changes privilege (because the exception vector was made by a privileged
process) and saves the old privilege on the stack. We can’t just do a return call because that
wouldn’t change privilege. We need to pop the registers %cs, %eip, and %esp simultaneously,
otherwise there would be a point in between where unprivileged code is trying to access
privileged memory. This can be accomplished using the iret instruction.

• Summary: kernel→ process: restores %esp, %eip, %cs from the kernel stack. In os01, you can
see an example in the schedule and run functions. schedule starts a process, run contains
iret.

• System calls, like int, are very expensive because they have to change a lot of things. There-
fore, changing privilege is inherently expensive.

3.1 Differences Between Exceptional Control Flows

• Types:

1. Trap: system call. Exception that the process wanted to take.

2. Interrupt: something the hardware does

3. Fault: caused by a mistake that the process makes. When the process does something
illegal, the OS needs to get control.

• Question: What does %eip point to in each situation? In a normal process, %eip points to
the instruction after the call.

1. Trap: %eip points to the call right after.

2. Interrupt: %eip points to the call right after.

3. Fault: %eip points to the faulting/problem instruction. All of the registers have the same
values as they would if problematic instruction were about to be run—same values at the
time of the exception. Important and interesting choice because it lets the kernel wind
back and realize that, if the instruction were to execute, there would be a problem. The
kernel can try and fix the program and restart at the faulting instruction. This happens
all the time—example: memory-mapped I/O. The kernel takes a region of memory and
marks as inaccessible. When you touch individual pages, you generate faults, and the
kernel fills in the relevant spaces in memory.

• At faults, the kernel can do whatever it wants, including choosing to skip over the faulting
instruction.

• Pagefault: name of a fault that happens at a virtual memory violation.

3

Andy Shi CS 61 Scribe Notes October 31, 2013

4 Virtual memory

• One of the most powerful ideas at the software/hardware boundary.

• Let’s say we are implementing a virtual memory system whose goal is to protect kernel
memory. We need to mark certain regions of the memory as only accessible to the kernel or
to both the kernel and process.

• We want a compact representation of which memory belongs to whom (to save space), so we
restrict the types of ranges we can have. For most machines, each of the ranges has to start
at a multiple of 4096 bytes, and must be a multiple of 4096 bytes wide. This is called a page
size. Note 4096 = 212.

• Virtual memory uses units of 4096 bytes aligned at 4096-byte boundaries. These are called
pages.

• Pages reduce by a factor of 4096 the maximum size of a memory map. The hardware reduces
that even further—fewer addresses to keep track of.

• Two-level page table: Uninteresting parts of memory have no addresses, which reduces the
size of the representation even more. Addresses have 32 bits.

Lower 12 bits: page offset

Other 20 bits: divided into two 10-bit sections. The top 10 bits are the level 1 page index, the
lower 10 bits are the level 2 page index.

• To check permissions for an address, the process reads the address, throws away the page
offset (all addresses on the same page have the same permissions), and looks at the current
page table register (%cr3 in x86) which defines at the current state of permissions. Page table
is an array of page entries, and is stored in kernel. Use level 1 page index to look up element
this page table array. Either the page table address is 0, in which case the address is invalid,
or the page table address points to some address in the 2nd page table. Use level 2 page
address to find some location in the 2nd page table. If that entry is 0, fault. If it’s kernel-only,
only the kernel can access it. If it’s kernel-or-user, then anyone can access it.

• Aside: 64-bit machines use a 4-level page table

• You can use other data structures, but the two-level page table has several benefits:

1. In weensyos, the valid addresses are from from 0 to 0x002FFFFF. The first 10 bits are
used to access the level 1 page table. These first 10 bits are all 0. Any access of addresses
in our specified range go to the same level 2 page table, so just one level 2 page table
is needed to hold these addresses. You only need 2 pages of memory to store the page
tables—one for the level 1 page table, one for the level 2 page table.

2. In Linux... there are vast regions of memory that are not accessed, such as the mem-
ory between the heap and stack, and before the text. The text/heap area goes from
0x08000000 to 0x09000000, and the first 10 bits of these addresses go from 0x20 to 0x23,
so we need 4 level 2 page tables to for these addresses. Then there is another region of
blank space (between the heap and stack). To represent the kernel addresses, the level
2 page tables for the kernel can be shared for every process because the kernel address
permissions are the same for every process.

4

