
October 24: CS61 Lecture 15
Lucy Cheng

Calling Convention

 How C compiler matches functions to instructions.
 Stack is part of calling convention.

 Not a law. You can imagine compiling a different way. Some
don’t use the stack.

 Examples:

o %eax is the return value.
o First argument is @ 4(%esp) when the function begins.

o Return address is @(%esp).
o Stack frames must be 16-bit aligned.

 Allow multiple compilers to work together.
 Callee-saved registers.

o Registers that a normal, well-behaved function will not
touch.

o %ebp, %esp, %ebx, %esi, %edi are callee-saved
register.

Structure

 %esp = top of the stack
o May change as the function executes.

 %ebp is the base pointer register.

o Compiler often reserves another register that is
consistent.

o Boundary between parameters and locals.
o Doesn’t change.

 f(int a, int b)

 | ret addr | a | b |

 ^ %esp
 pushl %ebp.

o Saves base pointer at start. At the end, pop and restore
value.

 pushl x = subl $4, %esp + movl x, (%esp)
 popl x = movl(%esp),x + addl $4, %esp

 ret addr g | | old ebp | ret addr | a | b |

 ^ %esp ^%ebp
 leave = movl %ebp, %esp + popl %ebp

 Last argument has highest address.

Lecture Code

l15/f42.s

 Calls g.
l15/43.s

 Clang automates.

l15/f44.s
 Calls g three times.

l15/f45.s

 Prints Hello! I love you. This message is false.
 $.L01 loads address of string into register.

l15/f46.s

 Function with two arguments. Prepare to call sum by moving

arguments. Calls sum(a,b).

l15/f47.c
 clang. Smart enough to know same arguments, so just jumps

to sum.

l15/f48.s
 8 arguments to sum.

l15/f54.s

 sum function. Sums two arguments.

l15/f55.s
 int f(int* x) {return x[0] + x[1];}

l15/f56.s
 int f(int* a, int* b) {return *a + *b;}

l15/f57.s

 int f(int a[], int b, int c) {return a[b] + a[c];}

l15/f58.s
 Array of structs. Adding second elements of two structs in the

array.

l15/f59.s
 leal. Loads effective address.

 Returns address of element in an array of elements of size 8.

l15/f65.s
 Loops. Returns sum from 1 to n.

l15/f66.s

 3 arguments.
 Searches for an element. Two exits from the loop. &&. Only

executes if the left is true.
 Compiler optimizes a lot, so a loop with one exit might have 2

exits in the object code.

l15/f68.s
 Sums elements of an array from 0 to n.

 Compares addresses instead of indices.

l15/f71.s

 Factorial function.

l15/f72.s
 Clang. Uses tail recursion for factorial

l15/f73.s

 While true loop. Actually a goto.
 Doesn’t actually take all the memory. Somehow does

something else.

Next Unit: How to protect against attacks on OS.

