
Lecture 14: October 22, 2013

Midterms:

 Average 75
 Median 76
 Standard Deviation 9
 Highest 93

Objective:
 Lecture 14 repository: review f24.s to f41.s

Details:
F24.s
 Movl b, %ecx //moves global variable b into %ecx
 Movl a, %eax

Cmpl %ecx, %eax //compares %ecx with %eax

When a, b not prefixed by any character, they are global variables
Global variables are 4 bytes

Tip: gdb command to look up registers: info registers

Condition codes:

 “Hidden” register set as a side effect of many arithmetic instructions
combines many flags

 ZF – zero flag
 OF – overflow flag
 CF – carry flag
 SF – sign flag
 PF – parody flag

Comparison instructions:
 Cmpl a, b => “subl a, b” without changing b
 Test a, b => “andl a, b” without changing b

Conditional jump instructions:

Different jump instructions are used for unsigned and signed variables

Cmpl %ecx, %eax

 Jge => jump if %eax - %ecx greater than or equal to zero, used for signed
 Jle => jump if %eax - %ecx less than or equal to zero, used for signed
 Ja => jump if %eax above %ecx, used for unsigned
 Jb => jump if %eax below %ecx, used for unsigned
 More at www.unixwiz.net/techtips/x86-jumps.html

http://www.unixwiz.net/techtips/x86-jumps.html

F:
.LBBO-2: these are not part of instruction stream
.Ltmp0:

 0010 > 0001 (always true)
 1000 > 0111 (true if unsigned, false if signed)

0 1 1 1
- 1 0 0 0
+ 1 1 1 1

F25.s
 Movl b, %eax
 Cmpl x, %eax //subtract b from x
 Jne .LBBo_2 //if ZF = 1 => jump

Returns either a or b
 If b == x return a; else return b;

Jne: jump is not equal, if ZF is 1

F26.s
 If b!= x return a; else return b;

F27.s
 Unsigned example

F28.s 31 23 15 7 0
 | | | %ah | %al |

 0-15: %ax
 0-31: %eax

sete: take the value of 0 flag, put into %al

 0 flag is 1 if they are equal (subtraction result of 0), in this case a = 0

 1 - > 00000001
 0 - > 00000000

movzbl: to make sure upper bits of %eax are zeros, move zero byte to long,

 used for unsigned

movsbl: used for signed

F29.s
 Same instructions as F28.s

 a is char*

Return !a; // take all non-zeros to 0, and take all zeros to 1

 NULL is 0 on x86 machines

F30.s
 Return a + x;
 Not okay: add a pointer to a pointer
 Okay: add a pointer to an int

 Char* a;
 Int x;
 Return &a[x];

F31.s
 Return a + (x << 2);

 Or char* a;
 Int x;
 Return &a[4*x];

 Or Int* a;
 Int x;
 Return &a[x];

F32.s
 Type of a is likely to be an unsigned char which is 1 byte
 Because movzbl extend a byte quantity into a long quantity

Sign Extension:
Using -1 as an example:
1111 = (movzbl) => 00001111
1111 = (movsbl) => 11111111

Movzbl and movsbl can provide information on whether the variable is signed or
unsigned. In this case, because movzbl is used in f32.s; therefore the variable in f32.s
must be an unsigned char

F33.s
 Movl a, %eax
 Movzbl (%eax), %eax // stores the pointee of %eax into %eax
 Ret

 a is likely to be a pointer to a char because of movzbl

 return *a or a[0]

General x86 assembly:
 Off (base, index, size)
 Address is off + base + index * size

 Off defaults to 0
 Index defaults to 0
 Size can only be [1,2,4,8] and defaults to 1

Index and size are useful for arrays, especially for arrays for chars, shorts,
ints as 64 bit quantities, off is useful for structs, combined useful for array of
structs.

F34.s
 movl x, %eax
 movzbl (%ecx, %eax), %eax // only 1 comma, then no size
 ret

 unsigned char* a;
 int x;
 return a[x];

F35.s
 Movl (%ecx, %eax, 4), %eax

 Int* a; // because the size is 4 bytes
 Int x;

Return a[x];

F36.s
 Cmpl 0, (%ecx, %eax, 4)

 Return a[x] != 0; // because setne %al loads %al with not equal

F37.s
 Movl x, %eax,
 Movzwl (%eax), %eax // x is an unsigned short*
 Ret //returns *x

F38.s
 Sums together an array of ints

Movl instructions can’t tell whether a quantity is signed or unsigned, have to
check extension instructions.

 Xorl %eax, %eax // set %eax to 0
 Movl x, %ecx // moving 32 bits quantity x to %ecx
 Testl %ecx, %ecx
 Je .LBBo_3 // if %ecx is initially 0, return 0

 Decl %ecx // decrement by 1

 Quantity has 4 bytes because of addl

F39.s
 Identity function:

Movl 4(%esp), %eax // move 4 bytes from the stack pointer

F40.s
 Add the two parameters

F41.s
 Same assembly code as F40.s

Add 2 parameters, but has 6 more unused parameters

Further notes:

 If there is a jump backwards, then there is a loop
 %esp points to the top of the stack, where stores the return address (4 bytes)
 Following return address, there stores parameter values, with padding of 4

bytes
 Parameters laid out in stack as if in a struct
 Extra parameter values that are not used will not affect assembly code
 Compilers modify to base, so even when input codes are using array

dereferencing, compiler may choose using either pointer arithmetic or array
dereferencing

 When compiling while loops into assembly codes, the conditions move to the
bottom to avoid extra jump statements

