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Networking

Clients and Servers
Oftentimes applications need to be split over the network, for various reasons.  This includes 
everyday activities like accessing a webpage using a browser.  These “network applications” 
are based on the client-server model, where a server manages some resource, and one or 
more clients send requests to the server, usually by manipulating the resource that the server 
manages.  A server and clients are specific instances of endpoints, since they are on the ends 
of the communication in this case.

 
The server and the client(s) send and receive data over the network by some predefined 
protocol, like HTTP.  For example, when you point your browser to the CS61 homepage, 
your machine sends a request defined by the HTTP protocol to the servers hosting the CS61 
homepage, asking for the homepage html.  The server extracts the client’s request for the page, 
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and sends back the html page to the client, who will then render Hello Kitty in all of its glory.
 
Question 1: Is it possible for a client process and a server process to be on the same machine?
Answer: Yes, the client-server model is not dependent on the network, and does not make 
assumptions about how the client and server are separated.
 
How exactly is data transferred between clients and servers?  Data must be marshalled into 
some format suitable for network communication, the unit of which is called a packet.  For 
example, if the server wants to transmit some data structure referenced by a pointer to a client, 
it must fetch the data structure itself, split the data structure up into packets, and send the 
packets to the client; it cannot simply pass a pointer to the client.  In other words, marshalling 
is the process of transforming the memory representation of something to another data format, 
which in this case is simply a packet.
 

Packets
What exactly is a packet, and what does it look like?
 
A network packet is a formatted unit of data which contains control information and user 
information.  They have a max size of 65,535 bytes (the maximum value of a 16-bit word).  It 
always consists of three fields:
 

1. header: contains routing information and metadata (control information)
2. payload: contains application data (user information)
3. footer: contains additional metadata (this field can be empty)

 

 
The header and footer metadata are determined by protocols, which simply specify what the 
fields are within the header and footer, as well as what type of data is in the payload.  Some 
common protocols include IP, TCP, UDP, HTTP, SMTP, POP, IMAP, and AIM.  Multiple 
protocols can be used in the same packet, as we’ll see in a bit.
 
The payload contains the actual data that we want to transmit between machines.  It’s important 
to note that the data is always organized in big endian order in packets by convention.
 
Question: How would we transmit an integer from one endpoint to another?
Answer: Encode the integer as an ASCII string in the packet.
 
Before we dive into specific protocols, it’s worth noting that the network is not reliable.  
Specifically, packets can be lost, duplicated, corrupted, and/or delivered out of order.
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IP, TCP, and UDP are some of the core protocols in today’s communications over networks.  
IP (the Internet Protocol) is used for routing packets across network boundaries.  The most 
common flavor of IP is IPv4, and its header consists of 14 fields including the total length of the 
packet, a source IP address (where the packet is coming from), and a destination IP address 
(where the packet is going) among other things.
 
TCP (the Transmission Control Protocol) is used for providing endpoints a reliable, ordered, 
delivery of bytes from one computer to another computer.  TCP abstracts the problems of the 
network (reliability, duplication, corruption, ordering, etc.) away from the endpoints.  Specifically, 
it has the following characteristics:
 

● end-to-end: only the endpoints are responsible for communicating over TCP
● reliable: data is guaranteed to be received once in the correct order
● stream-based: endpoints don’t need to think about splitting data into packets; they can 

just send bytes!
● connection-oriented: endpoints establish a connection before communicating

 
TCP is generally used as an intermediate level between IP - which dictates where a packet is 
coming from and where it is going -  and some application protocol like HTTP or IMAP - which 
dictates what type of data will be in the payload.  TCP’s header consists of 10 mandatory fields 
and an extra field for options.
 
Question: How long does it take an endpoint to transmit a TCP request to another endpoint?
Answer: As long as necessary or until some pre-specified timeout has passed. 
 
If an endpoint does not require a guarantee of delivery, correct ordering, or duplicate protection 
when sending data, it can use UDP (User Datagram Protocol) instead of TCP.  UDP does not 
provide any of extra benefits that TCP guarantees, meaning that machines can simply just send 
a UDP packet without having to establish a connection or treat incoming and outgoing data 
like a stream.  UDP also has a smaller footprint than TCP, as UDP’s header only consists of 4 
mandatory fields.
 
Question: For what types of data should UDP be used instead of TCP/How is UDP used?
Answer: UDP is used as an intermediate level between IP and application protocols that don’t 
mind unreliable communication, like remote desktop or video streaming or other applications 
which use a high volume of packets without explicitly requiring the benefits of TCP.
 
A normal HTTP (Hypertext Transfer Protocol) packet would actually consist of many layered 
protocols:
 

● Ethernet layer
● IP layer - for determining where the packet is from and where it is going
● TCP layer - for providing reliability and a stream abstraction to the endpoints
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● HTTP layer - request/response metadata and payload
 

 
An HTTP request is contained within a TCP packet, which is contained within an IP packet, 
which is contained within an Ethernet packet.  This is called packet encapsulation, and is used 
for all sorts of protocols, not just TCP, IP, or HTTP.
 
Want to see what a real packet looks like?  Download a packet sniffer, which monitors packets 
sent to and from your machine.  You’ll be able to analyze individual packets in packet sniffers, 
observing the different layers of packets and the different fields within layers/protocols.  A 
popular packet sniffer is WireShark, which you can download at http://www.wireshark.org/
download.html. 
 

Threads
Inherently, networking introduces slow connections between the client and the server. Slow 
connections, unless handled in parallel, results in low utilization, meaning the process spends 
a lot of time doing useless work. 
 
How can we solve this problem of low utilization? After all, many programs want to do many 
things all at the same time, each of which requires its own connection. For example, web 
browsers want to download web pages while chat clients want to send and receive messages. 
One answer is to run a new server for each new connection. However, this means there will be 
low utilization in terms of processes and memory, since each process needs its own address 
space; there will still be low utilization for every server that we use!
 
Using processes as a solution isn’t very efficient. Recall that there is typically high overhead 
cost associated with each new process we create because processes have their own address 
space. Creating a new server or process requires copying the resource that the server is 
managing, which is pretty expensive.  Instead, a better idea is to handle connections in 
parallel within a single process since handling connections is cheap. As a result, we don’t 
reduce the server utilization. Using threads is the solution!

Threads
● A thread is a logical flow of control that runs in the context of a process.

○ At the machine level, if a process is an abstract/virtual computer, then a process 
with multiple threads is essentially an abstract multi-core computer.

● Each process has one of more threads contained within it:
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○ Each process starts with a main thread.
○ New threads can then be created by older threads.

● Each thread has its own stack, stack pointer, program counter, and CPU registers.
● They share the same address space and OS resources as the process they are within, 

so they can communicate directly.
 
Old Process Address Space New Address Space with Threads

 
 
The idea behind using threads on a server is that the memory state of the server is expensive to 
copy. We should have multiple virtual CPUs (threads) use the same memory state to get work 
done, thus avoiding expensive memory state copying.
 
How do we manage threads? The OS has a process control block (PCB) [one per process] 
and a thread control block (TCB) [one per thread] data structure. Each TCB contains 
information on a single thread, such as processor state and registers, and points to the 
corresponding PCB. The PCB contains information on the process address space and OS 
resource, but not on the processor state!
 
Using this concept, the process can be viewed as a container for the threads it owns; threads 
are now what the OS needs to schedule on the processor, not processes. Each CPU of the 
processor can run one thread at a time, but all the CPUs can be used to run threads in parallel.
 
Question: Which is faster: switching between two threads in the same process, or switching 
between two threads in different processes?  Why?
 
Answer: Switching within the same process.

● Switching within the same process means we only need to save/restore CPU registers 
and the program counter.

● Switching across processes requires us to update to a new address space! We need to 
update the MMU and the TLB, and will have cache misses. (Check out virtual memory 
notes if you forgot what these mean).
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Pthreads
There’s a standard API for working with threads, also known as POSIX threads, or pthreads, in 
this pthread API.  Here are just a few useful functions that are part of the pthread API:
 

● int pthread_create(pthread_t *tid, pthread_attr_t *attr, void 
*(*start_routine)(void *), void *arg);

○ tid: returns thread ID of new thread
○ attr: set the attributes for the new thread (scheduling)
○ start_routine: a pointer to the function for this new thread to begin execution
○ arg: argument to the start_routine()

● void pthread_exit(void *retval)
○ explicitly terminates the current thread

● int pthread_cancel(pthread_t tid)
○ terminate thread with specific TID

 
To kill a thread, programs can invoke pthread_exit to kill the current thread or pthread_cancel 
to kill a specific thread.  Threads also terminate when the top-level process or the main thread 
terminates.

Code Example 0 - Creating Multiple Threads
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
 
volatile int var = 0;
void *run_thread1(void *arg);
void *run_thread2(void *arg);
 
void *run_thread1(void *arg){
    while(1)
        var++;
}
 
void *run_thread2(void *arg){
    while(1){
        printf("In thread2, var is %d.\n",var);
        sleep(1);
    }
}
 
int main(int argc, char **argv){
    pthread_t thread1, thread2;
    pthread_create(&thread1, NULL, run_thread1, NULL);
    pthread_create(&thread2, NULL, run_thread2, NULL);
    pthread_exit(NULL);
}

Code Example 1 - Merge Sort!
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Hopefully you understand the merge sorting algorithm!
 
Question: How can we implement merge sort using threads?
Answer:

● Recursively break the array into smaller blocks, and have separate threads sort the 
blocks in parallel.

● The smallest blocks will be sorted using an insertion sort.
● Then, we merge the sorted results from the threads, working our way back up to the 

completed result.

Code Example 2 - Sieve of Eratosthenes
The Sieve of Eratosthenes is a simple algorithm for finding all primes up to a given number.  
The algorithm filters all composite numbers that are multiples of the next prime it finds, starting 
from 2.  For example, the algorithm will declare 2 a prime, and then filter out all multiples of two, 
since they are not prime.  The algorithm will then go to the next unfiltered number, 3, filter out all 
multiples of 3, do the same for the next unfiltered number (5), and so on until all the primes have 
been found up to a given number.
 
How can we use threads to make a simple version of the sieve?

● Every prime has its own thread that is used for filtering out its multiples.
● Start with a single thread that is assigned the prime number 2.  We will call this thread 

the 2-thread.
● Every thread has a stream of inputs, which has been filtered by the previous thread.

○ For instance, the main thread will pass all numbers to the 2-thread. The 2-thread 
will pass all numbers not multiples of 2 to the next prime thread, which will now 
be designated as the 3-thread.  The 3-thread will then pass those numbers less 
the multiples of 3 to the next prime thread, the 5-thread, and this process will 
repeat until some threshold.

● The “next prime thread” is really a thread waiting to receive its prime assignment.  For 
example, there is initially only one thread with a prime assignment (2); the 2-thread 
passes on the next prime (3) to the next prime thread, so the current “next prime thread” 
becomes our 3-thread.  This prime assignment mechanism continues for each prime 
under the threshold.

 
Question: While this method is easy to understand, it’s actually really inefficient. Why?
Answer:  Threads early in the chain will be doing work on almost every number, so they enjoy 
good utilization. As we get to larger primes though, threads will continue to run but will be doing 
no useful work until they get a number that happens to be filtered down to them. They will 
continue to run and check that they have an assignment (busy loop) until they get an input that 
they can do work on.
 
Never fear! We can improve performance by doing a few tweaks and using...
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Locks and Condition Variables
The threads associated with larger numbers will spend a lot of time in a busy loop checking for 
an assignment, resulting in low utilization.  Additionally, these threads will hog cycles away from 
the threads who are actually doing useful work, most notably the really early threads like the 2-
thread and the 3-thread.  Ideally, these large number threads should be ignored or put to sleep 
until there is a prime to be assigned to a thread; at that point, a thread should be woken up and 
should be allowed to run with its new prime number assignment.
 
Turns out there’s a mechanism for this behavior called condition variables.  A condition 
variable, or CV, represents a condition for a thread, and isn’t itself a condition.  A thread can 
wait (or go to sleep) until some condition occurs, and a thread can also signal to other waiting 
threads that some condition has occurred.  
 
For example, let’s say that we want to spawn new threads and tell them to wait until they 
have received a prime assignment (a condition that hasn’t occurred); all new threads will then 
immediately go to sleep unless they already have an assignment.  When an early thread, 
like the 2-thread or the 3-thread, have found a new prime to be assigned (the condition has 
occurred), they can signal to one of the waiting threads that a prime is ready to be assigned.
 

● The reason we use CVs are for mutual exclusion, which allows us to synchronize 
access to shared memory

○ Example: threads want to decrement a global counter. Decrementing a counter 
consists of three assembly instructions:

■ First, they must get the value from the shared memory.
■ Next, they decrement the value.
■ Finally, they store the new value.

○ Without mutual exclusion, we don’t know the order that these events occur in 
across multiple threads, and we can’t reliably get a result that we want.

● All CV operations require that a thread performs a job using a lock. Why are locks 
necessary? 

○ Answer: We want to guarantee that events will occur in some proper order in the 
larger picture.

○ Example: decrement a counter while the counter != 0. Without a lock, we may 
just skip 0 and go into negative values! There is no guarantee that the threads 
will increment or decrement the counter properly.
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○ If there is no lock for Thread A, it might wait until after another thread sets the 
counter to 10 before proceeding.

○ If there is no lock for Thread B, there is no guarantee that incrementing will occur 
properly!

 
● Locks are objects in memory that allow us to enforce mutual exclusion and thus make 

use of CVs.
● Remember that address spaces and thus memory is shared among threads, so CVs 

require that threads acquire a lock in order to access or change some condition, like a 
counter for instance.

● The lock is released when the job is done (condition has been checked or changed), 
and the next thread is allowed to obtain the lock to check or change the condition.

● If a thread doesn’t own the lock, it can sleep so it doesn’t do useless work. We get 
improved utilization!

 
Question: How can we improve the sieve implementation from before?
Answer: Using CVs and locks, we can make sure each thread does work only when it gets a 
value. A thread gets a lock when it has a value to filter, and sleeps when there is no work to be 
done.
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