CS61 Scribe Notes 12/2

Administrative Things

final on 12/18 in SC

review session near the end of reading week

doodle poll for code review

all work for the class, except for final, is due by the end of reading week - will not
accept anything after reading week is over - Midnight next Wednesday

Problem Set 6 Handout Code

Server and Client (pong61) communicate with HTTP Requests
Use strace to trace system calls - strace -o strace.txt ./pong61
o write(3, “POST /test/reset HTTP/1.0\r\nHost:”...)
o method: POST
o locator: /test/rest
o protocol ID: HTTP/1.0
e read(3, “HTTP/1.1 200 OK...” ...)
o response:
m version: HTTP/1.1 (which HTTP version the server supports)
m status code: 200
e text description of status: OK
In linux, clone() does both fork() and new_threat()
e check the flags: CLONE_THREAD - create new thread, not new process
o CLONE_VM - share memory state
o CLONE_FS - share FDs
e anew thread is very like a new process, it just shares more

In handout code:

e each move of the ball is handled by a new thread
DIAGRAM - each sublevel represents a child thread of the parent level)
main
mutex_init
cond_init
pong_args
pthread_create(&pt) - new thread created

m copy arg (this is part of a possible race condition with the destruction of

pong_args)
connects to server
sends request
receives response
closes connection

m signal the main thread to continue using the condvar - this is only done
by THIS thread

m exit
lock
cond_wait - this is used to resolve the race condition discussed below; this code is
only run AFTER the child thread has signaled the main thread using condvar
unlock
usleep
than loop (go back to pong_args)
after look, destroy pong_args - we need to make sure this happend BEFORE
copy_args in the new thread!

(RESOLVED) Possible race conditions - pong_args are a local variable and are initialized in a
block (the loop)
pong_args are destroyed when the block ends

In handout code, now we go to phase 2:

Here, the server delays the full response after the reset request by the client
o First part of the response is sent, and only much later does the server say
“‘DONFE”
o Partial responses to clients are inevitable
m They are sent over TCP/IP protocol. Responses are divided into
multiple packets which aren’t al sent at the same time
Where does the delay happen in the dependency diagram?
o It happens in the receive_response, because the child thread only signals after
it has received a response from the server
m Pong thread is waiting on server, main thread is waiting on signal from
the pong thread, therefore main thread is waiting on the server...
o How to fix?
m Could we just move the signal below copy_args? This is what we want
to lock anyway.
m MAKE SURE not to put it before copy_args in child thread
m Did this work? No! However, we made good progress with a simple
movement of code - we need to make
New problem - ordering of pinged balls: there is nothing prevent the server from
responding out of order because we don’t wait until connect to continue the main
thread which might launch new threads.
o Solution - put the signal after the connect
New problem - we have too many concurrent connections (server caps at 30)
o How to fix? (need a count of threds)
m Keep track of the number of threads that we are running!
m In the main thread, nthreads = 0 (nthreads is a global variable)
e while (nthreads >= 30) do nothing

e In child threads, decrement thread count right before you exit
New problem - we have added race conditions in two new locations to the code (when
we increment and decrement the nthreads)
o What is the critical section in the code?
m The updates to nthreads must be done only by one thread
o use pthread function calls to deal with critical sections in the code
m pthread _mutex lock & pthread _mutex_unlock around increments and
decrements of nthreads
m later in pset we will need to do more data structure maintenance, and
when updating a global storing threads or connections, we also want to
lock
Concurrency Networking Synthesis
Eight Fallacies of Distributed Computing - Peter Deutsch
o read them online. All assumptions that are untrue
o 1) Network is reliable
m When you need to send a large amount of information, it is broken down
into smaller pieces that fit into packets.
m These packets are then sent over the network and reassembled into the
original piece of information
s BUT
e network is allowed to:
o drop pieces
o reorder pieces
o duplicate pieces
o delay pieces

o over time the network will change.
o Imagine a scenario
m You are asking for info from google

google sends packets 1, 2, 3,4, 5

speed boat cuts cable

only packets 1, 2 make it to you

google doesn’t know what info was sent to you,

will have to guess at what they need to resend.

m This can cause all kinds of problems with lost
packets, reordered packets, duplicate packets

m If we assume that the endpoint is smart enough to
handle these cases, the network can be much
easier to manage

m Called End-to-End principle

m 4 Layers
e Application Layer
o HTTP

e Transport Layer
o TCP
o TCP takes dropped pieces, reordered pieces, duplicate
pieces, and delayed pieces and reassembles them
e Network layer
o IP
e Physical Layer
o Ethernet protocol
e Problem Set 6 shows why the network is not reliable/secure
e |24 directory from lectures repository
o shows sort algorithms
o sort01 uses gsort (quicksort) call
m inlinereader.h
e line = char* s and size_t length
e lineset = array of lines with pointers to the front and end
o with 48 cores, how can we optimize this?
m idea #1 - split lineset into 48 pieces and then perform a standard merge
e 48 pieces into 1 piece directly
m idea #2 - split lineset into 32 pieces and merge 2 by 2
e 32 pieces -> 16 pieces -> 8 pieces -> 4 pieces -> 2 pieces -> 1
piece
o sort02 does this
m runs slightly faster than quicksort, but spends a lot of time in malloc
m quicksort is a sort in place algorithm, but mergesort needs to malloc
new space to merge into
o sort08 is most optimized
m runs about 3 times faster
e Next step if you liked CS61
CS146 - Architectures
Programming languages
Operating systems
Compilers
Seminar CS260r - taught by Eddy
m Detecting nasal demons (better ways to debug!) - run code backwards

O O O O O

