Lecture 21 (18 November 2014)
Authors: Hillary Do, Peter Kraft, Alex Sedlack, Michael Farrell
Signals (HD)
e Move from shell programming to network programming
e Waittimeout.c : first attempt to run a loop until time elapsed(.75 seconds) or exit loop,
whichever comes first
e Flaw of code
o Bad utilisation because it uses polling
e Ultilisation is general metric that can be applied to any system
o Fraction of some resource devoted to useful work
o Bigger numbers are better - want high utilisation
o Utilisation = value between 0 and 1
o Problem: who decides what’s useful?
e CPU: 98% utilised
o Who knows what’s useful?
o Eddie: not useful because knows what code does (Tight loop)
o Kernel: what is useful / not useful
m Useful work is when process is running
m Purpose of kernel: perform work on behalf of processes
m Even though it may be using a lot of the computer, we may know it is
not useful even though the kernel may think it is useful
m Kernel normally doesn’t look into a process to determine if the work is
useful
e Blocking: increase utilisation by getting rid of useless work
o Introduces race conditions
e Waitblock: parent process deliver signal when child process dies
Signal: wake up any blocked system call (slow system call)
Better to sleep and then wait for an interrupt because sleep won’t use the CPU
Use system to call to do blocking, in this case, sleeping
wait for child to print status
waitblock not using CPU -> less useless work
Where is the race condition [bug] (scheduling leads to incorrect outcome) in the
code?
m child exits -> parent exits or child goes past x milliseconds, and parent
exits at x milliseconds
m A: child exits right before sleeping (sleep won'’t be interrupted)
e Sleep-Wakeup Race
o Wake up (stop blocking) when a signal arrives. However, if signal arrives
before program sleeps, program will sleep for a very long time (race condition).
Solution is to use sigblock, which blocks signals temporarily, then delivers them
after process is unblocked. Leaves a race condition after unblocking, but a
much less dangerous one.
e Atomic Code: executes indivisibly without interruption

o O O O O

o Two things are atomic if they execute as a unit without interruption
What if signal runs and then process sleeps?

o can only send signal when process is asleep, how to fix?

m however can’t do it with linux. Kernel programming doesn't let us
disable interrupts forever
m sigblock: blocks signals
e “*every process must be killed
e use: block, then unblock signal before we sleep
Fork only after wake
Sigblock(int mask): While a signal is block, it will not be delivered, when it is unblocked
it will be delivered except every process can always be killed
select (slow system call): will get woken up after delivery of signal (pselect)
o generic way to go to sleep for specific amount of time
o Use pselect -> takes in a signal mask, atomically unblocks a set of signals
and sleeps, combines checking for an event and going to sleep in a single
operation
waitblock safe uses a pipe to solve this problem
takes in sig mask: unblock signals and sleeps
m solves sleep wake up race by combining unblock (checking for event)
and going to sleep into one atomic operation
m can block until file system descripter is readable
Bad code:
if (event_not_happen)
block forever();
Good code:
set up foreground pipeline
put fgpl in foreground;
if (SIGINT)
kill fg pipeline
wait for fgpl
What's a zombie process?

o *nix guarantees that when a process dies, its parent can recover its final status
(through waitpid). A zombie process has died, but its parent has not waited
yet, so it’s resources are still taking up memory
Expect to collect zombie processes; call wait for every child
Shell forks child, and parent dies -> Somebody has to wait for the child
init(1) -> parent dies child becomes a child of init and it loops and waits for child
Pstree- >shows all processes and their parents

o O O O

N Login Shell
init(1)

Terminal

“sh61

Child Process

Networking: Client-Server Programming

Message Sequence Diagram

time moves down

client = active party (sends request)

server = passive party (not actively contacting clients, waits for client contact)
client makes request -> server responds

O O O O

Client (Active Party) Server (Passive Party)

Ws

‘,//BEE'M

W‘
Response

Client

‘y
W‘
Wﬁ

+ Y Y

port 80: reserved for unencrypted web servers

port 443: encrypted web servers

Seems similar to a pipe but isnt a pipe

For pipes, need parents to create parent shell before children are forked off
To open communication, client & server need to

o 1. each create socket
o 2. client & server agree to create sockets (system call - connect)

Client (Active) Server (Passive)

}j sooet() I:| socket()
=Well known
CQHHE{:{‘U

endpoint
\ \

Telnet: 2 direction interactive text connection
Need a file descriptor to represent a future channel: Socket
o Creates an endpoint for communication
A network file descriptor
Client and server create sockets, and then connect binds them together
Server must be a well known endpoint
o To avoid race conditions, we do not use the listening socket for connections
o Instead we use accept(listenfd)
m Accept takes in a listenfd and returns a new fd for the connection
m Connected socket is bound to the clients socket
o Bad design of having serial number because when you change computers the
number changes
Telnet is very insecure, anyone can tell what you’re typing, uses it to keep open
Denial of service attack: when a user tries to make a network resource unavailable to
other users

