Computer Science 61
Scribe Notes
Tuesday, November 25, 2014 (aka the day before Thanksgiving Break)

e Problem Set 6 Released!
o People have fun with it
m Make Games
e Snake Game
m Hack JavaScript
o Due Wed., last day of reading period (not next wednesday)
m Classwide extension for all problem sets and regrades up until reading
period
e Mutual Exclusion
o Service server: serves information about services
o Tried version where every new connection created new process
m Ran out of processes
o Reduced overhead by using threads instead of processes
m One thread per connection
m Attacker could still run the system out of threads
m Applied a limit to the number of threads that could be created
e If too many connections, wait until one of the connections exits
e Polling mechanism; bad utilization
o “while (n_connection_threads > 100) {sched_yield()};
e To improve, added mutual exclusion
o Mutual Exclusion: At most thread’s instruction pointer can be in one region at
a time. That region is called the critical region.
o Example inincr.c
m Each thread adds 10 million to shared pointer stored on the stack
m main() creates threads
e pthread_join() is a lot like waitpid
o Arguements that waitpid accepted don’t apply to
pthread_join()
m threadfunc(void* arg)
e arg passes a pointer to a variable that is on the main thread’s
stack
e Is passing a pointer to the stack safe?
o Not always
o If you create a stack variable in a function that returns, it
is possible for that variable to go out of scope which
means you would be modifying memory you should no
longer have access to
o Not a problem in our program since main function lasts at
least as long as threads last

m What do we expect the total to be?
e Turns out it is often 40 million but is sometimes less
o The four threads each add 10 x 10”6, which results in a
sum anywhere between 10 x 1076 and 40 x 10”6
e Let’s try it on a machine with a lot of cores
o About 11 million
m What's going on?
e One thread says “I'm going to take this value and add to it.”
e Another thread says the same thing, pulling the same initial
value.
e Second thread’s storing of the value overwrites first thread’s
progress incrementing.
e But there’s one instruction, right?
o This operation accesses memory, and operations that
access memory are rarely actually atomic (indivisible)
o When we write ++mem; it might be translated into
assembly as a single instruction, but what the actual
processor does is a three-step procedure
m Loads %eax into a register (maybe a register that
we can’t name -- internal)
m Increments register
m Writes that register value back to memory
e What is an order of operations that gives x=2?

o Given the steps
m x=0
m Tl1a=>load xintor
m T1b=>++r

m Tlc=>x=r
m [2a=>r=x
m 12b=>++r

m T2c=>Xx=r

o Options that work:
m T1a, T1b, T1c, T2a, T2b, T2c
m T2a, T2b, T2c, T1a, T1b, T1c,

o Turns out that the only orders that work are all of the 1

steps followed by the 2 steps or vice versa
m Other orders load 0 into r (as x has not been set to
the updated value yet)
m What we need here is mutual exclusion!
e If T1 and T2 were critical regions, we would eliminate the
problem

Textbook uses something called a progress graph

J

\N\"l‘((tf [000Cen
Yy =

=N

o

One thread’s instruction pointer is one one axis; the other’s is on the
other axis
m The critical region on a progress graph is a region that should never be
entered.
m We don’t want both threads to have their pointers in 2, 3, or 4 at the
same time.
m Professor Kohler finds diagrams easier than progress graphs to logic
about more than two threads at a time
o How could we implement mutual exclusion without hardware?
m Usealock L
e Locking L
o if L is not locked, then lock it and return
o otherwise, try again
e Unlocking L
o mark L as unlocked
e Represent unlocked as 0, locked as 1

o Locking L
m while (L==1) {do nothing}; set L=1; return;
o Unlocking L

m L=0; return;
e The problem with this plan is that it just multiplies the issue!
o This lock itself suffers a synchronization issue!
m Is this even something that’s possible to do?
e Lamport’s Bakery Algorithm
o Makes the assumption that memory reads and writes
happen in a well-defined order
o Not actually true due to caches
m Multicore systems only work if the same data can
be cached in multiple caches at the same time

m On the x86 system, at most one processor can
write to the cacheline at a time

e cacheline bounces between processors

e slow process because it requires
coordination between processors

o “Are you writing x?”
o “Yes,|lam.

e This protocol isn’t necessarily engaged all
of the time. A store buffer exists which
allows a register to hold on to some stored
values and reconcile them only when the
store buffer is flushed.

o Only flushed when full or when told
to.

e |n an ideal world where sequential
instructions exist, it is not possible to get
both r1 and r2 equal to 0

e On an x86, you could get 0, 0

m This is an issue of memory models
e Fascinating and difficult subject essential
to multiprocessors
Can’t actually make a lock without hardware
e Intel's got our back
o What memory operations need to be atomic to allow us to
ensure locks work properly?
m Checking L and setting L need to be atomic

e “while (L == 1) {do nothing}; L=1;"

m When alock is in place, only one processor can
write to or read from a particular cacheline

o Intel has given us an assembly code prefix called “lock”
that implements mutual exclusion

m “lock addl” ensures that load and store happen in
one atomic step

m When we use this lock, we find that we are
guaranteed a sum of 40 million, even on the
multicore machine

e Takes 10 times the amount of time
because of all of the locking and unlocking

e Of course, if we over optimize we get the
correct result, 40 million, all of the time
without any calculation taking place even
with the incorrect code. Our compiler
solves the problem and compiles to a

program that just returns 40 million without
doing anything.
o How do we write this in ¢ code?
m gcc gives us certain macros that will compile down
to atomic assembly code

e “ sync fetch_and_add()” for example
o Note the double underscore at the
beginning

e see atomic_threadfunc() in lecture code
m What does our new code look like?

e Lock
o while (__snyc_fetch_and_add(x, 1)
>1) {13}
e Unlock

o Also need to change this code to
prevent L=0 from interleaving
between if (result>1) and --L; in the
lock thread

o Instead, atomically decrement L in
unlock function instead of setting it
equal to 0

o Digression: Creating a random number using parallelism?
m Cool idea!
m Poor utilization
m Attacker on same computer could control random
number by taking up a lot of the cores
e Only a small number of cores left to work
on the cacheline; therefore, reduced
randomness
o Could we do this example with code that uses one atomic
instruction instead of four?
m Yes, but we need a new atomic instruction
e cmpxchg(&m, expected, desired)

o “Compare and Exchange”

o in a single step, changes m to
desired only if it matches expected

m New code for lock and unlock

e Lock
o while (cmpxchg(&L, 0, 1 !=
0){/*spin*/}
e Unlock

o L=0;

e Our new instruction ensures that lock is
only 1 or O at a given time: it never enters
the 2 intermediary

o As aresult, we can write L=0; in
Unlock instead of L--;
m Compare and Exchange is the basis of any
efficient locking and unlocking system

e You could even use compare and
exchange to derive the atomic
increment/decrement instruction that we
were using before

Let me tell you a story: Debian and SSH key disaster

o

©)
O
©)

o

o

Debian security advisory: predictable random number generator
When you want to log into a secure location, you create an SSH key
Debian is a free vendor of Linux
All vendors make changes to Linux
m Try to change branding
m Try to fix bugs
e Might run through valgrind to find places where programs are
accessing uninitialized memory
e Might comment out the part of a program that accesses
uninitialized memory
e Debian did that, not realizing that it was data that the kernel was
requesting for the purpose of creating random data
As a result, if you created an SSH key on a Debian machine, you got one of
10,000 possible keys.
m There were only 10,000 possible keys IN THE WORLD
Github had to crawl its entire database and throw out all of the Debian keys

