CS61 Lecture Scribe Notes - Lecture 22
November 20, 2014
Transcribed and compiled by Group 2

Things being covered today:
-network programming
-synchronization

-threads

Looking at service-server02.c
-Fragile server - by connecting to the server, we can prevent it from handling anyone else’s
connections (i.e., it's vulnerable to a denial-of-service attack)
-man page for fdopen:
-Associates a stream with existing file descriptor £d
-Second argument “a+": opens file for reading and appending (writing at end of file)
-Side note: we can open a normal disk file with “a+” as well
-Looking at handle connection
-Note that we supply the same FILE for the parameters fin and fout
-Unlike file descriptors for disk files, socket file descriptors are like 2 streams: the file
descriptor is not seekable, and input and output are unrelated
-For example, consider the pseudo-code:
f = open(disk file, “a+”);
fputs (“*hello”, £f);
fgets (s, sizeof(s), f):;
With a disk file, you would expect to read what you put in; but that’s not the case with a
socket
-Weakness: there is only one thread of control in this program
-if the program stalls, how can we find out where it’s stalling?
-use gdb: we find out that it's stalled in £gets inside handle connection
-basically, fgets won’t return until the next line has been read
-this would be good but sometimes there are multiple “stakeholders”, each with their
own “goals” (i.e. they are not necessarily on the same page, and cannot be expected
to act in ways that are optimal for the server’s overall operation)
-How can the stall be fixed?
-Multithreading? No, we don’t know what that is.
-Fork!
-Using fork (see serviceserver-03.c):
-Each process now handles a different connection
-Need to make sure to exit after a connection has been handled - otherwise there’ll
be a lot of processes hanging around using up resources and not working
-Digression on execvp:
-We can replace the handle connection with a normal shell prompt, running
execvp (argv[0], argv) on {“echo”, “foo”, NULL}.

-This works fine. What if execvp fails, though - what if we run “ecko foo” instead?
-This is the reason we need to exit (1) ; after execvp
-Now, when we change back to the normal handle connection, the fork lets us run
serviceserver with multiple clients; however, a client should exit once it reads EOF, but it
isn’t exiting - what gives?
-Debugging techniques:
-printf: We place a fprintf right before the exit call. The statement gets printed
but it doesn’t seem like the child is exiting
-ps: We can use ps to check if the child is exiting (e.g. ps auxww | grep
serviceserver)
-valgrind: No
-Problem turns out to be that cfd (the connection file descriptor) is still open in the parent, so
we need to add the line close (cfd) ;
-Checkout serviceblaster, which sets up a bunch of connections with serviceserver
-Now we have a new issue: a client can no longer DoS attack our server, but we've created
the problem of the user being able to control our resources. Each time a request is made, the
server forks, and new processes are expensive. We can fix this with threading.

Threading:

-A thread is a virtual processor (vs. a process, which is a virtual computer)

-Threads share primary memory, but have different stacks, register sets, and instruction
pointers

-How do we create a new thread? We will use the pthreads (POSIX threads) library.

-In particular, the function pthread create creates a new thread that begins by running a
new function

-Declared as pthread create(id, attr, function, arg to function) --
according to Prof. Kohler the parameter attr is almost always NULL

Looking at serviceserver-05.c
-Why does a thread start out calling a new function, with a fresh stack, instead of copying
memory and jumping into a function in medias res (like fork does)? Because, in addition to
being more resource efficient, this way allows threads to share the same virtual memory
space, which means that they can communicate with each other by accessing shared
memory locations (not copies of the same memory). For example, threads can refer to a
global variable that is used by other threads
-We can print out the approximate location of the various thread stacks by printing out the
location of a local variable in each thread.
-Stacks are arranged contiguously (growing towards lower addresses), with a big
distance between main stack and threads, and between the 1st thread and the 2nd
-A new thread will be given the space of a thread that has exited (if available)
-Running serviceblaster, we find that pthread create eventually runs out of memory -
there’s only so much space for stacks.
-Forms of protection:

-Set a cap on the number of connections (“How about 1007?”)
-Set a timeout for connections that have been established more than n seconds ago
-Checkout serviceserver-06.c:
-We use a global variable to track and limit the number of connections
-But this has terrible CPU utilization! (Try running . /serviceserver-06
with. /serviceblaster and look at top)
-Now checkout serviceserver-08.c, which uses a condition variable
-There are two uses for a condition variable:
-Waiting for the condition to become true (pthread cond wait)
-Signaling that the condition has become true (pthread cond signal; note that
these type of signals are not like the interrupt signals we have previously talked about)
-Synchronization is the process of coordinating multiple threads/processes
-A synchronization object is an object that helps with synchronization
-Mutual exclusion: at most one thread allowed in a code region at a time
-Put pthread mutex lock and pthread mutex unlock atthe beginning and end of
critical sections (e.g. mutual exclusion regions)

Here’s a synchronization diagram for our threaded serviceserver that does not implement
mutual exclusion regions (main is on the left, connection thread on the right):

O = critical section
pthread create

++nconn
ARV o handle conn
\\ \\
oif (hconn > 100~ <
LY ™
b = -
............. N ETE AT & —=Nconn
—————————— ~
cm Yy
eptiiread_cond_wait R ,
="~ ®opthfead_signal

f pthread exit

= okay scheduling
e = bad scheduling!!! sleep-wakeup race condition bug

And here’s a (simplified) synchronization diagram after implementing mutual exclusion
regions (shown as the large ovals):

\j

Either schedule is fine! The race condition bug has been removed

Here's the relevant code for those who are interested. First, from connection thread:

pthread mutex lock (&mutex)
--n_connection threads;
pthread cond signal (&condvar) ;
pthread mutex unlock (&mutex) ;
pthread exit (0);

And now from main:

pthread mutex lock (&mutex);

if (n_connections threads > 100)
pthread cond wait (&condvar, é&mutex);

pthread mutex unlock (&mutex) ;

