
CS 61

Unit V: Process Management

Lecture 19: Application Process Management

November 11, 2014

Scribe Notes By: Avery Dao, Samuel Green, Mateusz Kulesza

Fork:

- Parent does not necessarily have priority over the child: parent might not run first.

- Both parent and child are isolated processes; each has equal access to the

resources of the machine, but neither has priority.

- Use waitpid(pid_t pid_of_child, int *status, int options) to ensure parent waits for child to

terminate before continuing.

Race condition:

- Process behavior depends on the order in which the process is run relative to other

processes - depends on the process scheduler.

- Cause of very rare, hard-to-locate bugs.

- Ex. Race condition in fork:

- Normally, parent runs first because fork() returns immediately to the process that

called it

- However, sometimes, child might run first in the rare case that there is a timer

interrupt between fork() and the print.

- Good practice to program in a way that makes race conditions more common and

therefore ensures your code handles them adequately.

- Linux has an (intentional) race conditional bug when redirecting output into a file.

Throughput and Latency:

- Latency: the time-delay involved in performing a given operation on one chunk of data.

- Throughput: the amount of data that can be processed in a given period of time.

- Leaf pile analogy: Moving one leaf from the leaf pile to the dump has low latency and low

throughput. Using a wheelbarrow (a cache/buffer for leaves) to move the entire pile to

the dump all at once has high latency and high throughput.

- In general, there is a tradeoff between latency and throughput.

- When stdio detects that STDOUT is the console, it prints immediately (low latency);

when it detects that STDOUT is a file on disk, it buffers, prioritizes throughput over

latency

./forkmix > x

- Calls fopen() before forking.

- Parent and child processes have different file descriptor tables but share the same file

pointer structure.

- Writes from either process advance the file pointer, ensuring that neither process

overwrites the work of the other process.

./forkmix2 > x

- Calls fopen() after forking.

- Parent and child processes have different file descriptor tables and different file pointer

structures. Both file pointer structures still point to the same disk space.

- Writes from either process can overwrite the writes of the other process because the file

pointers are advanced independently - the parent does not know that the child has

written to the file and vice versa.

Running a program: execvp

- Replaces the current process with a new process

- Either never returns (because process that called it disappears) or returns - 1

- Allows us to set up new environments for processes before calling them

The Sieve of Eratosthenes:

- Algorithm for finding prime numbers.

- Start with a list of all real numbers.

- Look for primes sequentially starting at 2: iterate through your real numbers list.

- If you find a prime, drop all multiples of that prime from your list of real numbers.

- Need pipes to implement this as a program.

Pipes:

- Pipes have two ends - a READ end and a WRITE end

- The READ end can only read data that has been written from WRITE end

- EOF indicated by all WRITE ends being closed - no processes point to the WRITE end.

- All WRITE ends closed ⇒ READ end receives EOF

- All READ ends closed ⇒ if process tries to write to WRITE end, it receives signal

to die

- Pipe hygiene = Closing all ends of pipes that we do not need open

- Pipe buffer is 64 kB

- pipe() system call takes in an array int pipefd[2] (for example), which will contain the

write (pipefd[0]) and read (pipefd[1]) file descriptors after the pipe is opened.

An Anecdote and Book Recommendation:

- Book: Programming Pearls by Jon Bentley

- Done Knuth and literate programming

