
1 Computer arithmetic with unsigned integers
All numbers are w-bit unsigned integers unless otherwise noted.

A w-bit unsigned integer x can be written out in binary as

x≡ xw−1xw−2 . . .x2x1x0,

where xi is the ith bit of x. Each xi is either 0 or 1, and the least-significant bit of x is
written on the right.

Mathematically,

x = 2w−1xw−1 +2w−2xw−2 + · · ·+22x2 +2x1 + x0

=
w−1

∑
i=0

2ixi.

1.1 Powers of two
Here’s an important fact:

k−1

∑
i=0

2i = 2k−1.

This should be intuitive. Think of decimal numbers: 9+1= 10; 99+1= 100; 999+1=
1000; and so forth. In each case,

999 . . .999︸ ︷︷ ︸
k−1 digits

=
k−1

∑
i=0

9×10i = 10k−1.

The binary version, above, is just the same, but with base 2 instead of 10. The funny
thing about b = 2 is that b−1 = 1, so the equivalent of the “9” factor inside the sum-
mation is 1, which we don’t need to write.

Also, the theory of geometric series tells us that

k−1

∑
i=0

ark = a
1− rk

1− r
.

Here, a = 1 and r = 2, so
k−1

∑
i=0

2i =
1−2k

1−2
= 2k−1.

1



1.2 And, or, xor, complement
Given x≡ xw−1 . . .x1x0 and y≡ yw−1 . . .y1y0, the bitwise operators x&y (and), x |y (or),
and x^ y (xor/exclusive-or) may be defined bitwise as follows.

(x & y)i =

{
1 if xi = 1 and yi = 1,
0 otherwise;

(x | y)i =

{
1 if xi = 1 or yi = 1,
0 otherwise;

(x^ y)i =

{
1 if xi 6= yi,
0 otherwise.

These definitions are textual translations of the basic truth tables for single-bit and, or,
and xor.

& 0 1 | 0 1 ^ 0 1
0 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 0

The bitwise complement, or “twiddle,” operator is unary; its bitwise definition is:

(~x)i =

{
1 if xi = 0,
0 otherwise.

We call these operators bitwise because they affect their operands’ bits independently.
In non-bitwise operators, like normal addition or unary negation, the value(s) at one bit
position in the operand(s) can affect other bit positions in the result.

Now, if you think about it, you’ll see that these alternate definitions of the bitwise
operators are equivalent to those above!

(x & y)i = min(xi,yi);
(x | y)i = max(xi,yi);
(x^ y)i = (xi + yi) mod 2;
(~x)i = 1− xi.

The simplicity of these alternate definitions—which comes mostly from the simplicity
of bits themselves—leads to some of the “magic” we saw in class.

Some basic identities, true for all x:

(x & x) = (x | x) = x

(x^ x) = 0
(x & 0) = 0

(x |0) = (x^0) = x

2



Proving these identities is pretty easy. If they’re not intuitive or obvious, why not try
one?

Now, here are some proofs of some slightly more complex properties, worked out
in more detail.

Lemma 1.1 For any x and y, (x & y)≤min(x,y).

Proof At each bit position i, (x & y)i = min(xi,yi). But min(xi,yi)≤ xi by definition of
min. Thus (x & y)i ≤ xi, and (x & y) ≤ x. A similar argument holds for y, and thus for
min(x,y). �

To be very explicit, we can expand the latter part of the argument. Write

(x & y) =
w−1

∑
i=0

2i(x & y)i.

Consider term i in the sum, namely 2i(x & y)i. We saw above that (x & y)i ≤ xi, so the
corresponding term is also less: 2i(x & y)i ≤ 2ixi. This holds for every term, so it also
holds for their sum:

(x & y) =
w−1

∑
i=0

2i(x & y)i ≤
w−1

∑
i=0

2ixi = x.

Lemma 1.2 For any x and y, (x | y)≥max(x,y).

Proof Analogous to above. �

Lemma 1.3 If (x & y) = 0, then x+ y = (x | y) = (x^ y).

Proof The intuitive argument has to do with carries. Addition on binary numbers is like
bitwise or, except for carries: when two bits in the same position are both 1, addition
causes a carry that affects higher bit positions, while bitwise or doesn’t. If (x & y) = 0,
there can be no carries.

For a more rigor, let’s first write out x+ y.

x+ y =
w−1

∑
i=0

2ixi +
w−1

∑
i=0

2iyi

=
w−1

∑
i=0

(2ixi +2iyi)

=
w−1

∑
i=0

2i(xi + yi).

Now, we know that (x & y) = 0. This means that at every bit position i, (x & y)i =
min(xi,yi) = 0: at least one of xi and yi equals 0. And this, in turn, means that xi + yi
is either 0 or 1! (Both values are bits—either 0 or 1 by definition—so their sum equals
2 only if both bits are 1, causing a carry.) By enumerating cases, then, it’s easy to see
that xi + yi = max(xi,yi). But then, since this equals (x | y)i, we see (x | y) = x+ y.

The ^ piece is just as easy. By enumerating cases, we see that (a | b)i = (a ^ b)i
unless ai = bi = 1. Again, this bad case never happens for our x and y. �

3



Lemma 1.4 For any x, −x = ~x+1.

Proof We simply evaluate the term x+(~x+1). If this term is 0, then ~x+1 =−x by
the definition of −x. We use the word width w at one critical step.

x+(~x+1) =
w−1

∑
i=0

2ixi +
w−1

∑
i=0

2i(~x)i +1

=
w−1

∑
i=0

2i(xi +(~x)i)+1

=
w−1

∑
i=0

2i(xi +1− xi)+1

=
w−1

∑
i=0

2i +1

= (2w−1)+1
= 2w

≡ 0 (mod 2w).

�

Lemma 1.5 If 0≤ x < 2k, then (2k + x)k = 1. (Assuming k < w.)

Proof First, we show that (2k & x) = 0. It’s quite easy to see that xi = 0 for all i ≥ k
(otherwise x would be 2k or larger), and that (2k)i = 0 for all i< k (by bitwise expansion
of 2k). The two numbers never have 1 in the same bit position, so their bitwise and is
0.

As a result, by Lemma 1.3, 2k+x=(2k |x), and (2k+x)k =(2k |x)k =max((2k)k,xk)=
1. �

Lemma 1.6 (x & (x−1)) = 0 if and only if x is either 0 or a power of 2.

Proof (⇒) Assume x is 0 or a power of 2. If x = 0, then obviously (x & (x−1)) = 0.
So assume x = 2k for some k with 0≤ k < w. Let’s write out the bitwise expansions of
x and x−1.

x = 2k;

x−1 = 2k−1 =
k−1

∑
i=0

2i.

Thus, xi (the ith bit of x) is 1 if and only if i = k. But (x− 1)i = 1 if and only if
i < k. The two numbers never have 1 bits in the same positions, min(xi,(x− 1)i) =
(x & (x−1))i = 0 for all i, and (x & (x−1)) = 0.

(⇐) Assume x is not 0 or a power of 2. Then x can be written as 2k + r, where
1 ≤ r < 2k. Here, k is the index of the highest 1 bit in x. And x− 1 can be written

4



as 2k +(r− 1), where 0 ≤ r− 1 < 2k− 1. Apply Lemma 1.5 twice, and we see that
xk = (x−1)k = 1. So So (x & (x−1))k = 1 and (x & (x−1)) 6= 0. �

5


