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Assembly Language (Machine Programming)

Introduction

• Learning Objectives

• Explain what assembly language is

• Define

• Registers

• Instruction

• Operands

• Produce assembly from C

• Figure out how the following are expressed in assembly

• Arithmetic operations

• Logical operations

• Figure out how arguments are passed to functions
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What is assembly?

• Yet another layer of abstraction!

• When you strip away C, the assembly language is a 

human readable representation that more closely 

matches the hardware.

• Typically each assembly instruction corresponds to a 

machine instruction.

• Assembly doesn’t really manipulate variables; it 

expresses computation in terms of:

• Registers

• Memory

• Instructions
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A Note on our Assembly

• We are using Intel x86-64.

• This means that we are using Intel’s 64-bit architecture

• The 3rd edition of the book uses this architecture in most 
sections, but still has some remnants of the 32-bit 
architecture in places.

• The 2nd edition of the book uses Intel’s 32-bit architecture.

• The two are quite similar, but you want to be sure to 
understand the 64-bit architecture.

• Three ways to see assembly output:

• cc –S x.c

• objdump –d x.o

• In gdb: disas(semble) <address>

9/20/16 CS61 Fall 2016 3



Screen Capture
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Example

.file “f00.c"

.text

.globl f

.type f,@function

f:

.LFB0:

rep ret

.LFE0:

.size f, .-f

.ident ”GCC: (Ubuntu 4.8.4-2ubuntu1~14.04.3”) 4.8.4”

.section .note.GNU-stack,"",@progbits
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Registers

• Registers are fast memory in the processor.

• Processors execute many instructions in a single cycle; 

accessing memory can take 10s or 100s of cycles; placing 

data in registers allows the processor to execute things more 

quickly.

• Most processors have a few tens of registers.

• The Intel x86-64 has 16 64-bit general purpose registers:

• %rax, %rbx, %rcx, %rdx, %rbp, %rsi, %rdi, %rsp, %r8-%r15

• Some conventions for how some of the registers are used.

• For example: 
– %rbp is the frame pointer

– %rax is used to return values from procedure calls

– %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass argument to procedures
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Parts of Registers

• In assembly language, we don’t really have types like we do in 
C, but we do operate upon data in different sized units:
• Double Quad word: 128 bits

• Quad word: 64 bits (q: 8 bytes)

• Double word: 32 bits (l: 4 bytes)

• Word: 16 bits (w: 2 bytes)

• Byte: 8 bits (b: 1 byte)

• While registers are quad words, we can access smaller items in 
registers, using different names for the register. Consider %rax:
• %eax references the low order 32 bits of %rax (a double word)

• %ax references the low order 16 bits of %rax (a word)

• %al references the low order 8 bits of %rax (a byte)

• %ah references bits 8-16 of %rax (also a byte)

• These conventions apply to %rbx, %rcx, etc.

• However, for registers %r8 - %r16, we use:
• %r8d, %r8w, %r8b
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Kinds of instructions

• Move data around

• Perform arithmetic operations

• Perform logical operations

• Compare things (sets condition flags)

• Flow control
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Screen capture
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Checkpoint 1

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.
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What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.
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What other operations act like 

imull and which ones act like 

add?

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen capture
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What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.
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Add, sub, and, or, xor all seem 

to have the same structure.

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen Capture
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What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
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It means: 
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Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen Capture
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What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
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Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

We change “types” in 

assembly by using instructions 

and registers of different sizes.

What if we have more than 2 

arguments?



Screen Capture
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What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.
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Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

We change “types” in 

assembly by using instructions 

and registers of different sizes.

Parameters are passed in:
• %rdi (arg1)
• %rsi(arg2)
• %rdx(arg3)
• %rcx(arg4)
• %r8 (arg5)
• %r9 (arg6)
• … and then on the stack


