Assembly Language (Machine Programming)
Introduction

« Learning Objectives
« Explain what assembly language is

Define

* Registers
 Instruction
« QOperands

Produce assembly from C

Figure out how the following are expressed in assembly
» Arithmetic operations
» Logical operations

Figure out how arguments are passed to functions

9/20/16 CS61 Fall 2016

What is assembly?

* Yet another layer of abstraction!

« When you strip away C, the assembly language is a
human readable representation that more closely
matches the hardware.

« Typically each assembly instruction corresponds to a
machine instruction.

« Assembly doesn’t really manipulate variables; it
expresses computation in terms of:
» Registers
 Memory
 |nstructions

9/20/16 CS61 Fall 2016

A Note on our Assembly

 We are using Intel x86-64.
« This means that we are using Intel's 64-bit architecture

 The 3 edition of the book uses this architecture in most
sections, but still has some remnants of the 32-bit
architecture in places.

« The 2" edition of the book uses Intel’s 32-bit architecture.

* The two are quite similar, but you want to be sure to
understand the 64-bit architecture.
* Three ways to see assembly output:
e CC-SX.C
* objdump —d x.0
» |n gdb: disas(semble) <address>

9/20/16 CS61 Fall 2016

Screen Capture

9/20/16 CS61 Fall 2016

Example

file “f00.c"
dext
.globl f
type f,@function
f:
. LFBO:
rep ret
. LFEO:
.Size f, .-f
Ident "GCC: (Ubuntu 4.8.4-2ubuntul~14.04.3") 4.8.4”
.section .note.GNU-stack,"",@progbits

9/20/16 CS61 Fall 2016

Registers

» Regqisters are fast memory in the processor.

9/20/16

Processors execute many instructions in a single cycle;
accessing memory can take 10s or 100s of cycles; placing
data in registers allows the processor to execute things more
quickly.

Most processors have a few tens of registers.

The Intel x86-64 has 16 64-bit general purpose registers:
o %rax, %rbx, %rcx, %rdx, %rbp, %rsi, %rdi, %rsp, %r8-%r15
« Some conventions for how some of the registers are used.

* For example:
— %rbp is the frame pointer
— %Y%rax is used to return values from procedure calls
— Yrdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass argument to procedures

CS61 Fall 2016 6

arts of Registers # 1

OK(ODb

* |n assembly language, we don't really have types like we do in
C, but we do operate upon data in different sized units:
« Double Quad word: 128 bits
. Quad word: 64 bits (q: 8 bytes) DA DO
« Double word: 32 bits (I: 4 bytes)
« Word: 16 bits (w: 2 bytes)
« Byte: 8 bits (b: 1 byte)
« While registers are quad words, we can access smaller items in
registers, using different names for the register. Consider %rax:
« Y%eax references the low order 32 bits of %rax (a double word)
« %ax references the low order 16 bits of %rax (a word)
« %al references the low order 8 bits of %rax (a byte)
« %ah references bits 8-16 of %rax (also a byte)
« These conventions apply to %rbx, %rcx, etc.

« However, for registers %r8 - %r16, we use:
* %r8d, %r8w, %r8b

9/20/16 CS61 Fall 2016 7

Kinds of instructions

 Move data around

e Perform arithmetic operations

« Perform logical operations

« Compare things (sets condition flags)
* Flow control

9/20/16 CS61 Fall 2016

Screen capture

9/20/16 CS61 Fall 2016

Checkpoint 1

* Registers are referenced with %

* When we see an imull operation like:
OP operandl, operand2, operand3
It means
operand3 = operandl * operand2
« When we see an add operation like:
OP operandl, operand2
It means:
operand2 = operand2 OP operandl
» The first argument was in %ed.i.
« The second argument was in %esi.

e We returned the result in %eax.

9/15/16 CS61 Fall 2016

What questions should we ask?

« Registers are referenced with % What other operations act like

When we see an imull operation like: imull and which ones act like
OP operandl, operand2, operand3 ; add?

It means
operand3 = operandl * operand2

« When we see an add operation like: .
OP operand1, operand2 What happens if we use longs

It means: instead of ints?
operand2 = operand2 OP operandl
» The first argument was in %ed.i.

» The second argument was in %esi. .
« We returned the result in %eax. What if we have more than 2

arguments?

9/15/16 CS61 Fall 2016 11

9/20/16

Screen capture

CS61 Fall 2016

12

What questions should we ask?

« Registers are referenced with % Add, sub, and, or, xor all seem
« When we see animull operation like: to have the same structure.
OP operandl, operand2, operand3
It means

operand3 = operandl * operand2

« When we see an add operation like: .
OP operand1, operand2 What happens if we use longs

It means: instead of ints?
operand2 = operand2 OP operandl
» The first argument was in %ed.i.

» The second argument was in %esi. .
« We returned the result in %eax. What if we have more than 2

arguments?

9/15/16 CS61 Fall 2016 13

9/20/16

Screen Capture

CS61 Fall 2016

14

What questions should we ask?

« Registers are referenced with % Add, sub, and, or, xor all seem
 When we see animull operation like: «<—— to have the same structure.

OP operandl, operand2, operand3 . -y
It means Only imull and idiv seem to

operand3 = operand1 * operand2 have the 3-op versions...

« When we see an add operation like: .
OP operand1, operand2 What happens if we use longs

It means: instead of ints?
operand2 = operand2 OP operandl
» The first argument was in %ed.i.

» The second argument was in %esi. .
« We returned the result in %eax. What if we have more than 2

arguments?

9/15/16 CS61 Fall 2016 15

9/20/16

Screen Capture

CS61 Fall 2016

16

What questions should we ask?

* Registers are referenced with %
* When we see an imull operation like: «——

OP operandl, operand2, operand3
It means /

operand3 = operandl * operand2

* When we see an add operation like: B Y
OP operand1, operand2 We change “types”in

It means: assembly by using instructions

operand2 = operand2 OP operand1l and registers of different sizes.
» The first argument was in %ed.i.

» The second argument was in %esi. .
« We returned the result in %eax. What if we have more than 2

arguments?

9/15/16 CS61 Fall 2016 17

9/20/16

Screen Capture

CS61 Fall 2016

18

What questions should we ask?

* Registers are referenced with %
* When we see an imull operation like: «——

OP operandl, operand2, operand3
It means /

operand3 = operandl * operand2
« When we see an add operation like:
OP operandl, operand2
It means:
operand2 = operand2 OP operandl
» The first argument was in %ed.i.
» The second argument was in %esi. .
« We returned the result in %eax. Parameters are passed in:
* %rdi (argl)
* %rsi(arg2)
* %rdx(arg3)
* %rcx(arg4)
* %r8 (argb)
* %r9 (argb)
« ... and then on the stack

9/15/16 CS61 Fall 2016 19

