
9/20/16 CS61 Fall 2016

Assembly Language (Machine Programming)

Introduction

• Learning Objectives

• Explain what assembly language is

• Define

• Registers

• Instruction

• Operands

• Produce assembly from C

• Figure out how the following are expressed in assembly

• Arithmetic operations

• Logical operations

• Figure out how arguments are passed to functions

1



What is assembly?

• Yet another layer of abstraction!

• When you strip away C, the assembly language is a 

human readable representation that more closely 

matches the hardware.

• Typically each assembly instruction corresponds to a 

machine instruction.

• Assembly doesn’t really manipulate variables; it 

expresses computation in terms of:

• Registers

• Memory

• Instructions

9/20/16 CS61 Fall 2016 2



A Note on our Assembly

• We are using Intel x86-64.

• This means that we are using Intel’s 64-bit architecture

• The 3rd edition of the book uses this architecture in most 
sections, but still has some remnants of the 32-bit 
architecture in places.

• The 2nd edition of the book uses Intel’s 32-bit architecture.

• The two are quite similar, but you want to be sure to 
understand the 64-bit architecture.

• Three ways to see assembly output:

• cc –S x.c

• objdump –d x.o

• In gdb: disas(semble) <address>

9/20/16 CS61 Fall 2016 3



Screen Capture

9/20/16 CS61 Fall 2016 4



Example

.file “f00.c"

.text

.globl f

.type f,@function

f:

.LFB0:

rep ret

.LFE0:

.size f, .-f

.ident ”GCC: (Ubuntu 4.8.4-2ubuntu1~14.04.3”) 4.8.4”

.section .note.GNU-stack,"",@progbits

9/20/16 CS61 Fall 2016 5



Registers

• Registers are fast memory in the processor.

• Processors execute many instructions in a single cycle; 

accessing memory can take 10s or 100s of cycles; placing 

data in registers allows the processor to execute things more 

quickly.

• Most processors have a few tens of registers.

• The Intel x86-64 has 16 64-bit general purpose registers:

• %rax, %rbx, %rcx, %rdx, %rbp, %rsi, %rdi, %rsp, %r8-%r15

• Some conventions for how some of the registers are used.

• For example: 
– %rbp is the frame pointer

– %rax is used to return values from procedure calls

– %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass argument to procedures

9/20/16 CS61 Fall 2016 6



Parts of Registers

• In assembly language, we don’t really have types like we do in 
C, but we do operate upon data in different sized units:
• Double Quad word: 128 bits

• Quad word: 64 bits (q: 8 bytes)

• Double word: 32 bits (l: 4 bytes)

• Word: 16 bits (w: 2 bytes)

• Byte: 8 bits (b: 1 byte)

• While registers are quad words, we can access smaller items in 
registers, using different names for the register. Consider %rax:
• %eax references the low order 32 bits of %rax (a double word)

• %ax references the low order 16 bits of %rax (a word)

• %al references the low order 8 bits of %rax (a byte)

• %ah references bits 8-16 of %rax (also a byte)

• These conventions apply to %rbx, %rcx, etc.

• However, for registers %r8 - %r16, we use:
• %r8d, %r8w, %r8b

9/20/16 CS61 Fall 2016 7



Kinds of instructions

• Move data around

• Perform arithmetic operations

• Perform logical operations

• Compare things (sets condition flags)

• Flow control

9/20/16 CS61 Fall 2016 8



Screen capture

9/20/16 CS61 Fall 2016 9



Checkpoint 1

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 10



What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 11

What other operations act like 

imull and which ones act like 

add?

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen capture

9/20/16 CS61 Fall 2016 12



What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 13

Add, sub, and, or, xor all seem 

to have the same structure.

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen Capture

9/20/16 CS61 Fall 2016 14



What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 15

Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

What happens if we use longs 

instead of ints?

What if we have more than 2 

arguments?



Screen Capture

9/20/16 CS61 Fall 2016 16



What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 17

Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

We change “types” in 

assembly by using instructions 

and registers of different sizes.

What if we have more than 2 

arguments?



Screen Capture

9/20/16 CS61 Fall 2016 18



What questions should we ask?

• Registers are referenced with %
• When we see an imull operation like:

OP operand1, operand2, operand3
It means

operand3 = operand1 * operand2

• When we see an add operation like:
OP operand1, operand2

It means: 

operand2 = operand2 OP operand1

• The first argument was in %edi.
• The second argument was in %esi.
• We returned the result in %eax.

9/15/16 CS61 Fall 2016 19

Add, sub, and, or, xor all seem 

to have the same structure.

Only imull and idiv seem to 

have the 3-op versions…

We change “types” in 

assembly by using instructions 

and registers of different sizes.

Parameters are passed in:
• %rdi (arg1)
• %rsi(arg2)
• %rdx(arg3)
• %rcx(arg4)
• %r8 (arg5)
• %r9 (arg6)
• … and then on the stack


